7.已知a,b,c分別是△ABC中角A,B,C的對邊,且csinB=$\sqrt{3}$bcosC.
(1)求角C的大小;
(2)若c=3,sinA=2sinB,求△ABC的面積S△ABC

分析 (1)根據(jù)正弦定理轉(zhuǎn)化csinB=$\sqrt{3}$bcosC,求出tanC的值即可得出C的值;
(2)由正弦定理化簡sinA=2sinB,再由c和cosC利用余弦定理得到關于a、b方程組,求出a、b的值,即可求出△ABC的面積.

解答 解:(1)△ABC中,csinB=$\sqrt{3}$bcosC,
∴sinCsinB=$\sqrt{3}$sinBcosC,
∴tanC=$\sqrt{3}$,
又C∈(0,π),
∴C=$\frac{π}{3}$;
(2)由sinA=2sinB及正弦定理得:
a=2b①,
由c=3,C=$\frac{π}{3}$及余弦定理得:
a2+b2-2abcosC=a2+b2-ab=c2=9,
即a2+b2-ab=9②,
聯(lián)立①②,
解得a=2$\sqrt{3}$,b=$\sqrt{3}$,
則△ABC的面積S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2$\sqrt{3}$×$\sqrt{3}$sin$\frac{π}{3}$=$\frac{3}{2}$.

點評 本題考查了靈活運用正弦、余弦定理化簡求值,以及運用三角形的面積公式求值的問題,是綜合性題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.對于函數(shù)f(x)定義域內(nèi)的任意x1,x2(x1≠x2),有以下結(jié)論:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)•f(x2
④f(x1•x2)=f(x1)+f(x2
⑤f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
⑥f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$
當f(x)=2x時,則上述結(jié)論中成立的是①③⑤(填入你認為正確的所有結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,在(0,+∞)上為增函數(shù)的是(  )
A.y=-2x2-3B.y=2x2-3xC.y=3xD.$y={log_{\frac{1}{2}}}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對邊分別是a,b,c,其中b為最大邊,若sin2(A+C)<sin2A+sin2C,則角B的取值范圍是( 。
A.$(0\;,\;\frac{π}{2})$B.$(\frac{π}{6}\;,\;\frac{π}{2})$C.$(\frac{π}{6}\;,\;\frac{π}{3})$D.$(\frac{π}{3}\;,\;\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一個三角形的三條邊長分別為7,5,3,它的外接圓半徑是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是①③⑤(寫出所有正確命題的編號)
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點;
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點;
③如果直線l經(jīng)過兩個不同的整點,則直線l必經(jīng)過無窮多個整點;
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù);
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.不等式ax2+bx+1>0的解集是(-$\frac{1}{2}$,$\frac{1}{3}$),則a-b=( 。
A.-7B.7C.-5D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=loga(x-1)-1(a>0且a≠1)必過定點(2,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.要得到y(tǒng)=-cos2x的圖象,可以將y=sin2x的圖象向左平移$\frac{3π}{4}$個單位長度即可.

查看答案和解析>>

同步練習冊答案