由空間向量基本定理可知,空間任意向量
p
可由三個不共面的向量
a
,
b
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
,
b
,
c
下的廣義坐標(biāo).特別地,當(dāng)
a
,
b
,
c
為單位正交基底時,(x,y,z)為直角坐標(biāo).設(shè)
i
j
,
k
分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底
i
+
j
,
i
-
j
,
k
下的廣義坐標(biāo)為______.
根據(jù)平面向量基本定理,空間直角坐標(biāo)(1,2,3)對應(yīng)的向量為
i
+2
j
+3
k
,
由于
i
+2
j
+3
k
=
3
2
(
i
+
j
)-
1
2
(
i
-
j
)+3
k

則空間直角坐標(biāo)(1,2,3)在基底
i
+
j
i
-
j
,
k
下的廣義坐標(biāo)為(
3
2
,-
1
2
,3

故答案為:(
3
2
,-
1
2
,3
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由空間向量基本定理可知,空間任意向量
p
可由三個不共面的向量
a
b
,
c
唯一確定地表示為
p
=x
a
+y
b
+z
c
,則稱(x,y,z)為基底
a
b
,
c
下的廣義坐標(biāo).特別地,當(dāng)
a
b
,
c
為單位正交基底時,(x,y,z)為直角坐標(biāo).設(shè)
i
j
,
k
分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底
i
+
j
,
i
-
j
,
k
下的廣義坐標(biāo)為
3
2
,-
1
2
,3
3
2
,-
1
2
,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由空間向量基本定理可知,空間任意向量可由三個不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標(biāo).特別地,當(dāng)為單位正交基底時,(x,y,z)為直角坐標(biāo).設(shè)分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底下的廣義坐標(biāo)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市樹德中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由空間向量基本定理可知,空間任意向量可由三個不共面的向量唯一確定地表示為,則稱(x,y,z)為基底下的廣義坐標(biāo).特別地,當(dāng)為單位正交基底時,(x,y,z)為直角坐標(biāo).設(shè)分別為直角坐標(biāo)中x,y,z正方向上的單位向量,則空間直角坐標(biāo)(1,2,3)在基底下的廣義坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊答案