畫出函數(shù)f(x)=-x2+2x+3的圖象,并根據(jù)圖象回答問題,比較f(0)、f(1)、f(3)的大小.
考點:二次函數(shù)的圖象
專題:函數(shù)的性質及應用
分析:利用五點作圖法,畫圖即可,由圖象得到f(0)、f(1)、f(3)的大小,問題得以解決.
解答: 解:圖象如圖所示,由圖象可知
f(0)=3,f(1)=4,f(3)=0,
∴f(3)<f(0)<f(1)
點評:本題主要考查了拋物線的畫法,即利用五點作圖法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知4a=
1
2
,lgx=a,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,a1=a(a∈N*),Sn=kan+1(n∈N*,k∈R),且常數(shù)k滿足0<|k|<1.
(1)求數(shù)列{an}的通項公式;
(2)對于每一個正整數(shù)m,若將數(shù)列中的三項am+1,am+2,am+3按從小到大的順序調(diào)整后,均可構成等差數(shù)列,且記公差為dm,試求k的值及相應dm的表達式(用含m的式子表示);
(3)記數(shù)列{dm}(這里dm是(2)中的dm)的前m項和為Tm=d1+d2+…+dm.問是否存在a,使得Tm<90對m∈N*恒成立?若存在,求出a的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的頂點A(1,5),AB邊上的中線所在直線方程為2Ox+9y-17=0,∠B的平分線所在直線方程為y=1,求BC邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的圖象經(jīng)過點(4,3),它在x軸上截得的線段長為2,并且對任意x∈R,都有f(2-x)=f(2+x),求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷函數(shù)f(x)=
x+1
x-1
在(-∞,0)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

同時投擲大小不同的兩顆骰子,所得點數(shù)之和是5的概率是(  )
A、
1
4
B、
1
6
C、
1
9
D、
1
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-|a+1|<-|2a-1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,且xf′(x)-f(x)>0對于?x∈R恒成立,若a>b>0,則下列不等式肯定成立的是( 。
A、af(a)>bf(b)
B、af(a)<bf(b)
C、bf(a)<af(b)
D、bf(a)>af(b)

查看答案和解析>>

同步練習冊答案