5.設(shè)a=ln2,b=log23,c=log3$\frac{1}{2}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>c>aC.b>a>cD.c>b>a

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵0<ln1<a=ln2<lne=1,
1=log22<b=log23<log24=2,
c=log3$\frac{1}{2}$<log31=0,
∴a,b,c的大小關(guān)系為b>a>c.
故選:C.

點評 本題考查三個數(shù)的大小的求法,是基礎(chǔ)題,解題時要認真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x-lnx的單調(diào)遞減區(qū)間是(  )
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知下列四個命題:p1:若函數(shù)$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\(a+2){e^{ax}},x<0\end{array}\right.$為R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是(0,+∞);p2:若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);p3:若$f(x)=x+\frac{1}{x+1}$,則?x0∈(0,+∞),f(x0)=1;p4:若函數(shù)f(x)=xlnx-ax2有兩個極值點,則實數(shù)a的取值范圍是$0<a<\frac{1}{2}$,其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y為正實數(shù),則$\frac{4x}{x+3y}+\frac{3y}{x}$的最小值為( 。
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)集合A={x|a≤x≤a+3},集合B={x|x<-1或x>5}.
(1)若A∩B≠∅,求實數(shù)a的取值范圍;
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(Ⅰ)解方程f(x)-4=0;
(Ⅱ)若關(guān)于x的不等式f(x)≤a解集為空集,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.將函數(shù)$f(x)=2sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{12}$個單位,再向上平移1個單位,得到g(x)的圖象.若g(x1)g(x2)=9,且x1,x2∈[-2π,2π],則2x1-x2的最大值為( 。
A.$\frac{49π}{12}$B.$\frac{35π}{6}$C.$\frac{25π}{6}$D.$\frac{17π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=$\frac{b\sqrt{{a}^{2}-{x}^{2}}}{a}$(a>b>0)的圖象是曲線C.
(1)在如圖的坐標系中分別做出曲線C的示意圖,并分別標出曲線C與x軸的左、右交點A1,A2
(2)設(shè)P是曲線C上位于第一象限的任意一點,過A2作A2R⊥A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某班一次數(shù)學(xué)考試成績頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],已知成績大于等于90分的人數(shù)為36人,現(xiàn)采用分層抽樣的方式抽取一個容量為10的樣本.
(1)求每個分組所抽取的學(xué)生人數(shù);
(2)從數(shù)學(xué)成績在[110,150]的樣本中任取2人,求恰有1人成績在[110,130)的概率.

查看答案和解析>>

同步練習(xí)冊答案