在正四面體PABC中,D,EF分別是AB,BCCA的中點(diǎn),下面四個(gè)結(jié)論中不成立的(  ).
A.BC∥平面PDFB.DF⊥平面PAE
C.平面PDF⊥平面ABCD.平面PAE⊥平面ABC
C
若平面PDF⊥平面ABC,則頂點(diǎn)P在底面的射影在DF上,又因?yàn)檎拿骟w的頂點(diǎn)在底面的射影是底面的中心,因此假設(shè)不成立,故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=a,BC=a,以對(duì)角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點(diǎn)與P點(diǎn)重合),P點(diǎn)在平面ACD上的射影恰好落在邊AD上的H處.

(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱臺(tái)ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2ADADA1B1,∠BAD=60°.
 
(1)證明:AA1BD
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱ABC—A1B1C1中,.

(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),

(1)求證;CE∥平面
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:

(1)聯(lián)結(jié),求異面直線所成角的大小;
(2)聯(lián)結(jié),求三棱錐C1-BCA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,邊長(zhǎng)為2的正方形中,點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),將△、△ 分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接,.

(1)求證:;     (2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線段D1E上,點(diǎn)P到直線CC1的距離的最小值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條直線a,b與兩個(gè)平面αβ,bα,則下列命題中正確的是(  ).
①若aα,則ab;②若ab,則aα;③若bβ,則αβ;④若αβ,則bβ.
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步練習(xí)冊(cè)答案