已知集合A={x|1≤x≤3},B={x|3x>9}
(Ⅰ)分別求A∩B,(∁RB)∪A;
(Ⅱ)已知集合C={x|a-4<x<a+1},若A⊆C,求實(shí)數(shù)a的取值范圍.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(Ⅰ)根據(jù)集合的基本運(yùn)算即可求A∩B,(CRB)∪A;
(Ⅱ)根據(jù)A⊆C,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
解答: 解:(Ⅰ)B={x|3x>9}={x|x>2},
則A∩B={x|2<x≤3},(CRB)∪A={x|1≤x≤2};
(Ⅱ)已知集合C={x|a-4<x<a+1},若A⊆C,
a+1≥2
a-4≤1
,
a≥1
a≤5
,解得1≤a≤5,
故實(shí)數(shù)a的取值范圍是[1,5].
點(diǎn)評:本題主要考查集合的基本運(yùn)算,要求熟練掌握集合的交并補(bǔ)的基本運(yùn)算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
①已知直線a、b和平面α,若a∥b,且a∥α,則b∥α;
②平面上到一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡是一條拋物線;
③已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R
)與雙曲線有且只有一個(gè)公共點(diǎn);
④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.
其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)等比數(shù)列{an}共有2n+1項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則an+1為(  )
A、
6
5
B、
5
6
C、20
D、110

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>0,f(x)=-2a(
3
sinxcosx+cos2x)+3a+b,當(dāng)x∈[0,
π
2
]時(shí),-5≤f(x)≤1.
(1)求a,b的值.
(2)設(shè)g(x)=f(x+
π
2
),求lg[g(x)-1]的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy內(nèi)作單位圓O,以O(shè)x為始邊作角α、β,它們的終邊與單位圓O的交點(diǎn)為A,B,則
OA
=
 
,
OB
=
 
,∠AOB=
 

由向量數(shù)量積的定義有
OA
OB
=
 
由向量數(shù)量積的坐標(biāo)表示有
OA
OB
=
 
=
 

于是,cos(α-β)=cosαcosβ+sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)(x∈R)是奇函數(shù),則(  )
A、函數(shù)f(x2)是奇函數(shù)
B、函數(shù)[f(x)]2是奇函數(shù)
C、函數(shù)f(x)•x2是奇函數(shù)
D、函數(shù)f(x)+x2是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,m和n都是實(shí)數(shù),且m(1+i)=7+ni,則
m+ni
m-ni
( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l1y=x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A,B兩個(gè)不同的點(diǎn),與X軸相交于F.
(Ⅰ)證明:a2+b2>1;
(Ⅱ)若橢圓的離心率為
3
2
,O是坐標(biāo)的原點(diǎn),求
OA
OB
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-2sinx+a(x∈[0,
π
2
]),a為常數(shù).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在[0,
π
2
]上有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案