【題目】在直角坐標系中,曲線軸交于,兩點,點的坐標為,當變化時,解答下列問題:

)能否出現(xiàn)的情況?說明理由.

)證明過,三點的圓在軸上截得的弦長為定值.

【答案】見解析.(見解析

【解析】試題分析:(1)設設,,并用根與系數(shù)關系表示出,計算的值,根據(jù)其不為0可知不能出現(xiàn)的情況;

(2)設圓心E的坐標,并分別表示出其橫、縱坐標的值,根據(jù)圓E的方程可得過A、B、C 三點的圓在y軸上截得的弦長.

試題解析:)設,,則,是方程的兩根,

所以,,

,

所以不能出現(xiàn)的情況.

)過,,三點的圓的圓心必在線段的垂直平分線上,

設圓心,則,由

,化簡得,

所以圓的方程為,

,得,,

所以過,三點的圓在軸上截得的弦長為,

所以過,三點的圓在軸上截得的弦長為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DB=DC;
(2)設圓的半徑為1,BC=3,延長CE交AB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖放置的邊長為2的正三角形沿軸滾動, 設頂點的縱坐標與橫坐標的函數(shù)關系式是, 有下列結論:

①函數(shù)的值域是;②對任意的,都有

③函數(shù)是偶函數(shù);④函數(shù)單調遞增區(qū)間為.

其中正確結論的序號是________. (寫出所有正確結論的序號)

說明:

“正三角形沿軸滾動”包括沿軸正方向和沿軸負方向滾動. 沿軸正方向滾動指的是先以頂點為中心順時針旋轉, 當頂點落在軸上時, 再以頂點為中心順時針旋轉, 如此繼續(xù). 類似地, 正三角形可以沿軸負方向滾動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

Ⅰ)若函數(shù)處的切線方程為,求的值;

Ⅱ)當時,若不等式恒成立,求的取值范圍;

Ⅲ)當時,若方程上總有兩個不等的實根, 的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長都是正整數(shù)的三角形中,周長是2009的三角形與周長是2012的三角形哪一種的個數(shù)多?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數(shù)按分組,其頻率分布直方圖如圖所示,學校要求每名教師都要參加兩項培訓,培訓結束后進行結業(yè)考試.已知各年齡段兩項培訓結業(yè)考試成績優(yōu)秀的人數(shù)如表示,假設兩項培訓是相互獨立的,結業(yè)考試成績也互不影響.

年齡分組

A項培訓成績優(yōu)秀人數(shù)

B項培訓成績優(yōu)秀人數(shù)

[20,30)

30

18

[30,40)

36

24

[40,50)

12

9

[50,60]

4

3


(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求從年齡段[20,30)抽取的人數(shù);
(2)求全校教師的平均年齡;
(3)隨機從年齡段[20,30)和[30,40)內各抽取1人,設這兩人中兩項培訓結業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 為實數(shù),且,

(I)求方程的解;

(II)若滿足,求證:①;

(III)在(2)的條件下,求證:由關系式所得到的關于的方程存在,使

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,為線段的中點,為線段上一點.

(1)求證:;

(2)求證:平面平面;

(3)當平面時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內的單調性;

(2)若f(x)在[1,e]上的最小值為,求實數(shù)a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案