已知F1,F(xiàn)2是橢圓C:=1(a>b>0)的左、右焦點,點P(-,1)在橢圓上,線段PF2與y軸的交點M滿足=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動點N(x0,y0)關于直線y=2x的對稱點為N1(x1,y1),求3x1-4y1的取值范圍.
(1)=1    (2)[-10,10]
(1)點P(-,1)在橢圓上,
=1.①
又∵=0,M在y軸上,
∴M為PF2的中點,
∴-+c=0,c=
∴a2-b2=2,②
聯(lián)立①②,解得b2=2(b2=-1舍去),
∴a2=4.
故所求橢圓C的方程為=1.
(2)∵點N(x0,y0)關于直線y=2x的對稱點為N1(x1,y1),

解得
∴3x1-4y1=-5x0
∵點N(x0,y0)在橢圓C:=1上,
∴-2≤x0≤2,
∴-10≤-5x0≤10,
即3x1-4y1的取值范圍為[-10,10].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C的中心在原點,焦點在x軸上,兩焦點F1,F(xiàn)2之間的距離為2,橢圓上第一象限內(nèi)的點P滿足PF1⊥PF2,且△PF1F2的面積為1.
(1)求橢圓C的標準方程;
(2)若橢圓C的右頂點為A,直線l:y=kx+m(k≠0)與橢圓C交于不同的兩點M,N,且滿足AM⊥AN.求證:直線l過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知動圓過定點P(1,0),且與定直線l:x=-1相切;
(1)求動圓圓心M的軌跡方程;
(2)設過點P且斜率為-
3
的直線與曲線M相交于A、B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的漸近線方程為,則以它的頂點為焦點,焦點為頂點的橢圓的離心率等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1,F(xiàn)2是橢圓=1的左、右兩焦點,P為橢圓的一個頂點,若△PF1F2是等邊三角形,則a2=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若橢圓的離心率是,則的值為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分別是橢圓的左右焦點,上一點且軸垂直,直線的另一個交點為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓過點,兩個焦點為.
(1)求橢圓的方程;
(2),是橢圓上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案