(2007•河?xùn)|區(qū)一模)橢圓與雙曲線
x2
5
-y2=1有共同的焦點,且一條準(zhǔn)線的方程是x=3
6
,則此橢圓的方程為(  )
分析:由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1
(a>b>0).根據(jù)雙曲線的方程即可得出焦點即c,再利用c2=a2-b23
6
=
a2
c
即可得出.
解答:解:由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
x2
a2
+
y2
b2
=1
(a>b>0).
由雙曲線
x2
5
-y2=1可得c=
a2+b2
=
6

∴a2-b2=6,
又橢圓的一條準(zhǔn)線的方程是x=3
6
=
a2
c
,
聯(lián)立解得a2=18,b2=12.
∴此橢圓的方程為
x2
18
+
y2
12
=1

故選A.
點評:熟練掌握雙曲線、橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)已知F1,F(xiàn)2是雙曲線
x2
2
-y2=1的左、右焦點,P、Q為右支上的兩點,直線PQ過F2,則|PF1|+|QF1|-|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)在約束條件
0≤x≤2
0≤y≤2
y-x≥1
下,z=4-2x+y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)函數(shù) y=
x2+2
(x≤0)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河?xùn)|區(qū)一模)△ABC的內(nèi)角滿足sinA+cosA>0,tanA-sinA<0,則A的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案