【題目】函數(shù)f(x)=(k﹣2)x2+2kx﹣3. (Ⅰ)當(dāng)k=4時(shí),求f(x)在區(qū)間(﹣4,1)上的值域;
(Ⅱ)若函數(shù)f(x)在(0,+∞)上至少有一個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)若f(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)k的取值范圍.
【答案】解:(Ⅰ)當(dāng)k=4時(shí),f(x)=2x2+8x﹣3=2(x+2)2﹣11,
f(x)的對稱軸是x=﹣2,f(x)在(﹣4,﹣2)遞減,在(﹣2,1)遞增,
所以f(x)min=f(2)=﹣11,f(x)max=f(1)=7,
所以f(x)的值域?yàn)閇﹣11,7)
(Ⅱ)若函數(shù)f(x)在(0,+∞)上至少有一個(gè)零點(diǎn),可分為以下三種情況:
①若k﹣2>0即k>2時(shí),f(x)=(k﹣2)x2+2kx﹣3的對稱軸方程為 ,
又f(0)=﹣3<0,由圖象可知f(x)在(0,+∞)上必有一個(gè)零點(diǎn);
②若k﹣2=0即k=2時(shí),f(x)=4x﹣3,令f(x)=0得 ,
知f(x)在(0,+∞)上必有一個(gè)零點(diǎn) ;
③若k﹣2<0即k<2時(shí),要使函數(shù)f(x)在(0,+∞)上至少有一個(gè)零點(diǎn),
則需要滿足 解得 ,
所以
綜上可知,若函數(shù)f(x)在(0,+∞)上至少有一個(gè)零點(diǎn),k的取值范圍為
( III)①當(dāng)k=2時(shí),f(x)=4x﹣3在區(qū)間[1,2]上單增,所以k=2成立;
②當(dāng)k>2時(shí),∵f(0)=﹣3<0,顯然在f(x)在區(qū)間[1,2]上單增,所以k>2也成立;
③當(dāng)k<2時(shí),∵f(0)=﹣3,∴必有 成立,解得 .
綜上k的取值范圍為
【解析】(Ⅰ)根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)在(﹣4,1)的值域即可;(Ⅱ)通過討論k的范圍,集合二次函數(shù)的性質(zhì),確定k的范圍即可;(Ⅲ)通過討論k的范圍,判斷函數(shù)的單調(diào)性,從而確定k的范圍即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的),還要掌握函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m∈R,函數(shù)f(x)= ,g(x)=x2﹣2x+2m2﹣1,若函數(shù)y=f(g(x))﹣m有6個(gè)零點(diǎn)則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】狄利克雷是德國著名數(shù)學(xué)家,函數(shù)D(x)= 被稱為狄利克雷函數(shù),下面給出關(guān)于狄利克雷函數(shù)D(x)的五個(gè)結(jié)論: ①若x是無理數(shù),則D(D(x))=0;
②函數(shù)D(x)的值域是[0,1];
③函數(shù)D(x)偶函數(shù);
④若T≠0且T為有理數(shù),則D(x+T)=D(x)對任意的x∈R恒成立;
⑤存在不同的三個(gè)點(diǎn)A(x1 , D(x1)),B(x2 , D(x2)),C(x3 , D(x3)),使得△ABC為等邊角形.
其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從某地區(qū)隨機(jī)調(diào)查了100個(gè)用戶,得到用戶對產(chǎn)品的滿意度評分頻率分布表如下:
組別 | 分組 | 頻數(shù) | 頻率 |
第一組 | (50,60] | 10 | 0.1 |
第二組 | (60,70] | 20 | 0.2 |
第三組 | (70,80] | 40 | 0.4 |
第四組 | (80,90] | 25 | 0.25 |
第五組 | (90,100) | 5 | 0.05 |
合計(jì) | 100 | 1 |
(1)根據(jù)上面的頻率分布表,估計(jì)該地區(qū)用戶對產(chǎn)品的滿意度評分超過70分的概率;
(2)請由頻率分布表中數(shù)據(jù)計(jì)算眾數(shù)、中位數(shù),平均數(shù),根據(jù)樣本估計(jì)總體的思想,若平均分低于75分,視為不滿意.判斷該地區(qū)用戶對產(chǎn)品是否滿意?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點(diǎn) ,并且經(jīng)過點(diǎn) .
(1)求橢圓的方程;
(2)若過點(diǎn)A(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過點(diǎn)M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐V﹣ABC中,VA=VB=AC=BC=2,AB= ,VC=1.
(Ⅰ)證明:AB⊥VC;
(Ⅱ)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)函數(shù)f(x)=log4(a )(a≠0),g(x)=log4(4x+1)﹣ 的圖象有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是某校120名學(xué)生假期閱讀時(shí)間(單位:小時(shí))的頻率分布表,現(xiàn)用分層抽樣的方法從[10,15),[15,20),[20,25),[25,30)四組中抽取20名學(xué)生了解其閱讀內(nèi)容,那么從這四組中依次抽取的人數(shù)是( )
分組 | 頻數(shù) | 頻率 |
[10,15) | 12 | 0,10 |
[15,20) | 30 | a |
[20,25) | m | 0.40 |
[25,30) | n | 0.25 |
合計(jì) | 120 | 1.00 |
A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com