【題目】(1)解關(guān)于x不等式.
(2)若對于,不等式恒成立,求x的取值范圍.
【答案】(1)答案見詳解;(2).
【解析】
(1)當(dāng)時,可直接求解,當(dāng)時,不等式化為,再根據(jù)和0與的之間大小關(guān)系進(jìn)行分情況討論;
(2)題設(shè)條件可以轉(zhuǎn)化為對于恒成立,將分別代入不等式,即可求出的范圍.
(1),
,即
①當(dāng)時,不等式化為:,解得;
②當(dāng)時,方程的兩根分別為,
i當(dāng)時,不等式的解集為,
ii當(dāng),即時,不等式的解集為,
iii當(dāng),即時,不等式的解集為,
iv當(dāng),即時,不等式的解集為,
綜上所述:當(dāng)時,不等式的解集為;
當(dāng)時,不等式的解集為;
當(dāng)時,不等式的解集為;
當(dāng)時,不等式的解集為;
當(dāng)時,不等式的解集為;
(2)對于恒成立,
對于恒成立,
,
解得,
故的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計 | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計 | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓.
(1)若直線過點(diǎn)且被圓截得的弦長為2,求直線的方程;
(2)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為為坐標(biāo)原點(diǎn),滿足,求點(diǎn)的軌跡方程及的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.
(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);
(2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?
(3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001)
附:①;
②,則;
③.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,中美貿(mào)易摩擦不斷.特別是美國對我國華為的限制.盡管美國對華為極力封鎖,百般刁難并不斷加大對各國的施壓,拉攏他們抵制華為5G,然而這并沒有讓華為卻步.華為在2019年不僅凈利潤創(chuàng)下記錄,海外增長同祥強(qiáng)勁.今年,我國華為某一企業(yè)為了進(jìn)一步增加市場競爭力,計劃在2020年利用新技術(shù)生產(chǎn)某款新手機(jī).通過市場分析,生產(chǎn)此款手機(jī)全年需投人固定成本250萬,每生產(chǎn)x(千部)手機(jī),需另投入成本萬元,且,由市場調(diào)研知,每部手機(jī)售價0.8萬元,且全年內(nèi)生產(chǎn)的手機(jī)當(dāng)年能全部銷售完.
(Ⅰ)求出2020年的利潤(萬元)關(guān)于年產(chǎn)量x(千部)的函數(shù)關(guān)系式(利潤=銷售額-成本);
(Ⅱ)2020年產(chǎn)量x為多少(千部)時,企業(yè)所獲利潤最大?最大利潤是多少?
(說明:當(dāng)時,函數(shù)在單調(diào)遞減,在單調(diào)遞增)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)通過(Ⅰ)中的方程,求出y關(guān)于x的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若從裝有個紅球和個黑球的口袋內(nèi)任取個球,則下列為互斥的兩個事件是( )
A.“至少有一個黑球”與“都是黑球”B.“一個紅球也沒有”與“都是黑球”
C.“至少有一個紅球”與“都是紅球”D.“恰有個黑球”與“恰有個黑球”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com