已知圓O的方程為x2+y2=1,直線l1過點(diǎn)A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設(shè)圓O與x軸相交于P,Q兩點(diǎn),M是圓O上異于P,Q的任意一點(diǎn),過點(diǎn)A且與x軸垂直的直線為l2,直線PM交直線l2于點(diǎn)P′,直線QM交直線l2于點(diǎn)Q′.求證:以P′Q′為直徑的圓C總經(jīng)過定點(diǎn),并求出定點(diǎn)坐標(biāo).
分析:(1)由已知中直線l1過點(diǎn)A(3,0),我們可以設(shè)出直線的點(diǎn)斜式方程,化為一般式方程后,代入點(diǎn)到直線距離公式,根據(jù)直線與圓相切,圓心到直線的距離等于半徑,可以求出k值,進(jìn)而得到直線l1的方程;
(2)由已知我們易求出P,Q兩個(gè)點(diǎn)的坐標(biāo),設(shè)出M點(diǎn)的坐標(biāo),我們可以得到點(diǎn)P′與Q′的坐標(biāo)(含參數(shù)),進(jìn)而得到以P′Q′為直徑的圓的方程,根據(jù)圓的方程即可判斷結(jié)論.
解答:解:(1)由題意,可設(shè)直線l
1的方程為y=k(x-3),
即kx-y-3k=0…(2分)
又點(diǎn)O(0,0)到直線l
1的距離為
d==1,解得
k=±,
所以直線l
1的方程為
y=±(x-3),
即
x-4y-3=0或
x+4y-3=0…(5分)
(2)對(duì)于圓O的方程x
2+y
2=1,令x=±1,即P(-1,0),Q(1,0).
又直線l
2方程為x=3,設(shè)M(s,t),則直線PM方程為
y=(x+1).
解方程組
,得
P/(3,),
同理可得:
Q/(3,).…(9分)
所以圓C的圓心C的坐標(biāo)為
(3,),半徑長為
||,
又點(diǎn)M(s,t)在圓上,又s
2+t
2=1.故圓心C為
(3,),半徑長
||.
所以圓C的方程為
(x-3)2+(y-)2=()2,…(11分)
即
(x-3)2+y2-+-=0
即
(x-3)2+y2-+=0,
又s
2+t
2=1
故圓C的方程為
(x-3)2+y2--8=0所以圓C經(jīng)過定點(diǎn),y=0,則x=
3±2,
所以圓C經(jīng)過定點(diǎn)且定點(diǎn)坐標(biāo)為
(3±2,0)(15分)
點(diǎn)評(píng):本題考查的知識(shí)是直線和圓的方程的應(yīng)用,其中熟練掌握直線與圓不同位置關(guān)系時(shí),點(diǎn)到直線的距離與半徑的關(guān)系,弦長公式等是解答本題的關(guān)鍵.