設(shè)直線(xiàn)l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿(mǎn)足k1k2+2=0.
(1)證明l1與l2相交;
(2)證明l1與l2的交點(diǎn)在橢圓2x2+y2=1上.
[解答示范] 證明 (1)假設(shè)l1與l2不相交,
則l1與l2平行或重合,有k1=k2,(2分)
代入k1k2+2=0,得k+2=0.(4分)
這與k1為實(shí)數(shù)的事實(shí)相矛盾,從而k1≠k2,即l1與l2相交.(6分)
(2)由方程組
解得交點(diǎn)P的坐標(biāo)(x,y)為(9分)
從而2x2+y2=22+2
===1,
此即表明交點(diǎn)P(x,y)在橢圓2x2+y2=1上.(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010年全國(guó)普通高等學(xué)校招生統(tǒng)一考試、文科數(shù)學(xué)(上海卷) 題型:044
已知橢圓的方程為=1(a>b>0),A(0,b)、B(0,-b)和Q(a,0)為的三個(gè)頂點(diǎn).
(1)若點(diǎn)M滿(mǎn)足,求點(diǎn)M的坐標(biāo);
(2)設(shè)直線(xiàn)l1∶y=k1x+p交橢圓于C、D兩點(diǎn),交直線(xiàn)l2∶y=k2x于點(diǎn)E.若k1·k2=,證明:E為CD的中點(diǎn);
(3)設(shè)點(diǎn)P在橢圓內(nèi)且不在x軸上,如何構(gòu)作過(guò)PQ中點(diǎn)F的直線(xiàn)l,使得l與橢圓的兩個(gè)交點(diǎn)P1,P2滿(mǎn)足?令a=10,b=5,點(diǎn)P的坐標(biāo)是(-8,-1).若橢圓上的點(diǎn)P1,P2滿(mǎn)足,求點(diǎn)P1,P2的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年普通高等學(xué)校招生全國(guó)統(tǒng)一考試安徽卷數(shù)學(xué)文科 題型:044
設(shè)直線(xiàn)l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿(mǎn)足k1k2+2=0,
(Ⅰ)證明l1與l2相交;
(Ⅱ)證明l1與l2的交點(diǎn)在橢圓2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分20分)設(shè)直線(xiàn)l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿(mǎn)足k1k2+1=0.
(Ⅰ)證明:直線(xiàn)l1與l2相交;(Ⅱ)試用解析幾何的方法證明:直線(xiàn)l1與l2的交點(diǎn)到原點(diǎn)距離為定值.(Ⅲ)設(shè)原點(diǎn)到l1與l2的距離分別為d1和d2求d1+d2的最大值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com