【題目】下列四種說法中,正確的個數(shù)有
①命題均有的否定是:使得;
②“命題為真”是“命題為真”的必要不充分條件;
③,使是冪函數(shù),且在上是單調(diào)遞增;
④不過原點的直線方程都可以表示成;
A. 3個B. 2個C. 1個D. 0個
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在x軸上,一個頂點為,離心率為,過橢圓的右焦點F的直線l與坐標軸不垂直,且交橢圓于A,B兩點.
求橢圓的方程;
設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C,B,N三點共線?若存在,求出定點的坐標;若不存在,說明理由;
設(shè),是線段為坐標原點上的一個動點,且,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)非直角的內(nèi)角、、所對邊的長分別為、、,則下列結(jié)論正確的是_____(寫出所有正確結(jié)論的編號).
①“”是“”的充分必要條件
②“”是“”的充分必要條件
③“”是“”的充分必要條件
④“”是“”的充分必要條件
⑤“”是“”的充分必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,棱長為1,點為線段上的動點(包含線段端點),則下列結(jié)論錯誤的是( )
A. 當時,平面
B. 當為中點時,四棱錐的外接球表面為
C. 的最小值為
D. 當時,平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 1級優(yōu) | 2級良 | 3級輕度污染 | 4級中度污染 | 5級重度污染 | 6級嚴重污染 |
該社團將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達到優(yōu)良?
(Ⅱ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為1000元,空氣質(zhì)量等量等級為3級時每天需凈化空氣的費用為2000元.若從這10天樣本中空氣質(zhì)量為1級、2級、3級的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用為3000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”,低于60分鐘的學(xué)生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 |
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關(guān)?
(2)利用分層抽樣從這100名學(xué)生的“讀書迷”中抽取8名進行集訓(xùn),從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出(百萬)與銷售額(百萬)之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10(百萬)時,銷售收入的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】箱子里有16張撲克牌:紅桃、、4,黑桃、8、7、4、3、2,草花、、6、5、4,方塊、5,老師從這16張牌中挑出一張牌來,并把這張牌的點數(shù)告訴了學(xué)生甲,把這張牌的花色告訴了學(xué)生乙,這時,老師問學(xué)生甲和學(xué)生乙:你們能從已知的點數(shù)或花色中推知這張牌是什么牌嗎?于是,老師聽到了如下的對話:學(xué)生甲:我不知道這張牌;學(xué)生乙:我知道你不知道這張牌;學(xué)生甲:現(xiàn)在我知道這張牌了;學(xué)生乙:我也知道了.則這張牌是( )
A. 草花5B. 紅桃
C. 紅桃4D. 方塊5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com