某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測,一個橋墩的費(fèi)用為256萬元,相鄰兩個橋墩之間的距離均為x,且相鄰兩個橋墩之間的橋面工程費(fèi)用為(1+)x萬元,假設(shè)所有橋墩都視為點且不考慮其他因素,記工程總費(fèi)用為y萬元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時,需要新建多少個橋墩才能使y最。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)求的取值范圍,使在閉區(qū)間上是單調(diào)函數(shù);
(2)當(dāng)時,函數(shù)的最大值是關(guān)于的函數(shù).求;
(3)求實數(shù)的取值范圍,使得對任意的,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若對于區(qū)間內(nèi)的任意,總有成立,求實數(shù)的取值范圍;
(2)若函數(shù)在區(qū)間內(nèi)有兩個不同的零點,求:
①實數(shù)的取值范圍; ②的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;
(2)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求實數(shù)m的取值范圍;
(2)若方程兩根均在區(qū)間(0,1)內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N+),其中x1為正實數(shù).
(1)用xn表示xn+1;
(2)求證:對一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)為偶函數(shù).
(1)求k的值;
(2)若方程f(x)=log4(a·2x-a)有且只有一個根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩條直線l1:y=m和l2:y=,l1與函數(shù)y=|log2x|的圖象從左至右相交于點A、B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當(dāng)m變化時,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com