17.口袋中裝有4個形狀大小完全相同的小球,小球的編號分別為1,2,3,4,甲、乙依次有放回地隨機抽取1個小球,取到小球的編號分別為a,b.在一次抽取中,若有兩人抽取的編號相同,則稱這兩人為“好朋友”,則甲、乙兩人成為“好朋友”的概率為$\frac{1}{4}$.

分析 由題意知兩人取球包含的基本事件總數(shù)n=16,其中滿足兩人為“好朋友”的共有4種情況,由此能求出甲、乙兩人成為“好朋友”的概率.

解答 解:由題意知兩人取球包含的基本事件總數(shù)n=16,分別為:
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),
其中滿足兩人為“好朋友”的共有4種情況,分別為:(1,1),(2,2),(3,3),(4,4),
∴甲、乙兩人成為“好朋友”的概率為p=$\frac{4}{16}=\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={x|x≥0},N={x|x2<1},則M∩N=( 。
A.[0,1]B.[0,1)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a+i=(b+i)(2-i)(其中a,b是實數(shù),i為虛數(shù)單位),則復(fù)數(shù)a+bi在復(fù)平面內(nèi)所對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合M={0,1},集合N滿足M∪N={0,1},則集合N共有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字1、2、3、4,甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),則甲獲勝的概率為(  )
A.$\frac{4}{9}$B.$\frac{3}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2+(x-1)|x-a|+3(a∈R).
(1)若函數(shù)f(x)在R上單調(diào)遞增,求a的取值范圍;
(2)若對?x∈R,不等式f(x)≥2x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的右焦點、右頂點和上頂點,若$OF=FA,{S_{△FAB}}=\frac{{\sqrt{3}}}{2}$
(1)求a的值;
(2)過點P(0,2)作直線l 交橢圓于M,N 兩點,過M 作平行于x 軸的直線交橢圓于另外一點Q,連接NQ
,求證:直線NQ 經(jīng)過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定積分${∫}_{1}^{e}$$\frac{1}{x}$dx的值等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,某地區(qū)有一塊長方形植物園ABCD,AB=8(百米),BC=4(百米),植物園西側(cè)有一塊荒地,現(xiàn)計劃利用該荒地擴大植物園面積,使得新的植物園為HBCEFG滿足下列要求:E在CD的延長線上,H在BA的延長線上,DE=0.5(百米),AH=4(百米),N為AH的中點,F(xiàn)N⊥AH,EF為曲線段,它上面的任意一點到AD與AH的距離乘積為定值,F(xiàn)G,GH均為線段,GH⊥HA,GH=0.5(百米).
(1)求四邊形FGHN的面積;
(2)已知音樂廣場M在AB上,AM=2(百米),若計劃在EFG的某一處P開一個植物園大門,在原植物園ABCD內(nèi)選一點Q,為中心建一個休息區(qū),使得QM=PM,且∠QMP=90°,問點P在何處,AQ最。

查看答案和解析>>

同步練習(xí)冊答案