利用函數(shù)圖像判斷下列方程有沒有根,有幾個根:
(1)-x2+3x+5=0;
(2)2x(x-2)=-3;
(3)x2=4x-4;
(4)5x2+2x=3x2+5.
(1)令f(x)=-x2+3x+5,作出函數(shù)f(x)的圖像,它與x軸有兩個交點,∴方程-x2+3x+5=0有兩個不相等的實數(shù)根. (2)2x(x-2)=-3可化為2x2-4x+3=0,令f(x)=2x2-4x+3,作出函數(shù)f(x)的圖像,它與x軸沒有交點,∴方程2x(x-2)=-3無實根. (3)x2=4x-4可化為x2-4x+4=0,令f(x)=x2-4x+4,作出函數(shù)f(x)的圖像,它與x軸只有一個交點(相切),∴方程x2=4x-4有兩個相等的實數(shù)根. (4)5x2+2x=3x2+5可化為2x2+2x-5=0,令f(x)=2x2+2x-5,作出函數(shù)f(x)的圖像,它與x軸有兩個交點,∴方程5x2+2x=3x2+5有兩個不相等的實數(shù)根. |
科目:高中數(shù)學 來源: 題型:
設M是滿足下列條件的函數(shù)f(x)構成的集合:“①方程f(x)-x=0有實數(shù)根;②函數(shù)f(x)的導數(shù)f′(x)滿足0<f′(x)<1.”
(1)若函數(shù)f(x)為集合M中的任一元素,試證明方程f(x)-x=0只有一個實根;
(2)判斷函數(shù)g(x)=-+3(x>1)是否是集合M中的元素,并說明理由;
(3)“對于(2)中函數(shù)g(x)定義域內的任一區(qū)間[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,請利用函數(shù)y=lnx的圖像說明這一結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com