要得到函數(shù)y=3cos(2x-
π
2
)的圖象,可以將函數(shù)y=3sin(2x-
π
4
)的圖象沿著x軸向______單位.
由于函數(shù)y=3cos(2x-
π
2
)=3sin2x,函數(shù)y=3sin(2x-
π
4
)=3sin2(x-
π
8
),
故要得到函數(shù)y=3cos(2x-
π
2
)的圖象,可以將函數(shù)y=3sin(2x-
π
4
)向左平移
π
8
個(gè)單位,
故答案為:
π
8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=sinx的圖象向右平移
π
2
個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,所得的圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=1-sinxB.y=1+sinxC.y=1-cosxD.y=1+cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)y=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)
的圖象相鄰的最高點(diǎn)與最低點(diǎn)的坐標(biāo)分別為(
12
,3),(
11π
12
,-3)
,求函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,函數(shù)y=2cos(ωx+θ)(x∈R,0≤θ≤
π
2
)
的圖象與y軸交于點(diǎn)(0,
3
)
,且在該點(diǎn)處切線的斜率為-2.
(1)求θ和ω的值;
(2)已知點(diǎn)A(
π
2
,0)
,點(diǎn)P是該函數(shù)圖象上一點(diǎn),點(diǎn)Q(x0,y0)是PA的中點(diǎn),當(dāng)y0=
3
2
,x0∈[
π
2
,π]
時(shí),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象如下所示.
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間,并指出f(x)的最大值及取到最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=3cos(
x
2
+
π
3

(1)求出f(x)的最小正周期、單調(diào)增區(qū)間、對(duì)稱軸方程;
(2)說明此函數(shù)圖象可由y=cosx上的圖象經(jīng)怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)f(x)=sin2x+cos2x的圖象向左平移
π
6
個(gè)單位得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象
( 。
A.關(guān)于直線x=
π
24
對(duì)稱
B.關(guān)于直線x=
11π
24
對(duì)稱
C.關(guān)于點(diǎn)(-
π
24
,0)
對(duì)稱
D.關(guān)于點(diǎn)(
π
24
,0)
對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則的值等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),則=(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案