分析:(1)令2x-1≥0,可求得其定義域;通過(guò)換元:令t=
(t≥0),則x=
,可把原函數(shù)轉(zhuǎn)化為二次函數(shù)求得值域;
(2)分a>1,0<a<1兩種情況可求得定義域;由y=
≥0,即可得到值域.
解答:解:(1)由2x-1≥0,解得x≥
,所以函數(shù)定義域?yàn)閇
,+∞),
令t=
(t≥0),則x=
,
y=
+t=
(t+1)
2,因?yàn)閠≥0,所以y≥
(0+1)
2=
.
即函數(shù)值域?yàn)椋篬
,+∞).
(2)令a
x-1≥0,得a
x≥1,
①當(dāng)a>1時(shí),x≥0,此時(shí)函數(shù)定義域?yàn)閇0,+∞);
②當(dāng)0<a<1時(shí),x≤0,此時(shí)函數(shù)定義域?yàn)椋?∞,0].
所以,當(dāng)a>1時(shí),函數(shù)定義域?yàn)閇0,+∞);
當(dāng)0<a<1時(shí),函數(shù)定義域?yàn)椋?∞,0].
y=
≥0,所以函數(shù)的值域?yàn)閇0,+∞).
點(diǎn)評(píng):本題考查函數(shù)定義域及值域的求法,屬基礎(chǔ)題,熟練掌握基本函數(shù)的定義域、值域的求法是解決該類問(wèn)題的基礎(chǔ).