5.若關(guān)于x不等式xlnx-x3+x2≤aex恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[e,+∞)B.[0,+∞)C.$[\frac{1}{e},+∞)$D.[1,+∞)

分析 設(shè)f(x)=xlnx-x3+x2,x>0,
利用導(dǎo)數(shù)求出f(x)的極值和最值,從而求出a的取值范圍.

解答 解:設(shè)f(x)=xlnx-x3+x2,x>0,
則f′(x)=lnx+1-3x2+2x,
且f′(1)=ln1+1-3+2=0,
∴1是f(x)的極值點(diǎn),也是最值點(diǎn);
∴f(x)<0恒成立,
又ex>0恒成立,
∴a的取值范圍是[0,+∞).
故選:B.

點(diǎn)評(píng) 本題考查了不等式恒成立問(wèn)題,也考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與求最值問(wèn)題,是綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖所示,在△ABC中,點(diǎn)D、E、F分別是邊AB、BC、AC的中點(diǎn),則下面結(jié)論正確的是(  )
A.$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{FA}$B.$\overrightarrow{DE}+\overrightarrow{AF}=0$C.$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}≠0$D.$\overrightarrow{DE}-\overrightarrow{DF}=\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.若二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,-1]上,不等式f(x)≥2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,左頂點(diǎn)為A(-4,0),過(guò)點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知P為AD的中點(diǎn),是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在說(shuō)明理由;
(Ⅲ)若過(guò)O點(diǎn)作直線l的平行線交橢圓C于點(diǎn)M,求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)p,q是兩個(gè)命題,若(¬p)∧q是真命題,那么(  )
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是真命題且q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=$\sqrt{7}$.cos∠BAD=-$\frac{\sqrt{7}}{14}$,sin∠CBA=$\frac{\sqrt{21}}{6}$,則BC的長(zhǎng)為( 。
A.$\sqrt{7}$B.2C.3D.2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)=10x+lgx,則f′(1)等于( 。
A.10B.10ln10+$\frac{1}{ln10}$C.$\frac{10}{ln10}$+ln10D.11ln10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)f(x)=-$\frac{1}{3}$x3+ax2+bx+ab,x∈R,其中a,b∈R.
(Ⅰ)若函數(shù)f(x)在x=1處有極小值-$\frac{22}{3}$,求a.b的值;
(Ⅱ)若|a|>1,設(shè)g(x)=|f′(x)|,求證:當(dāng)x∈[-1,1]時(shí),g(x)max>2;
(Ⅲ)若a>1,b<1-2a,對(duì)于給定x1,x2∈(-∞,1),x1<x2,α=mx1+(1-m)x2,β=(1-m)x1+mx2,其中m∈R,α<1,β<1,若|f(α)-f(β)|<|f(x1)-f(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,過(guò)拋物線上一點(diǎn)P作拋物線C的切線l交x軸于點(diǎn)D,交y軸于點(diǎn)Q,當(dāng)|FD|=2時(shí),∠PFD=60°.
(1)判斷△PFQ的形狀,并求拋物線C的方程;
(2)若A,B兩點(diǎn)在拋物線C上,且滿足$\overrightarrow{AM}+\overrightarrow{BM}=0$,其中點(diǎn)M(2,2),若拋物線C上存在異于A、B的點(diǎn)H,使得經(jīng)過(guò)A、B、H三點(diǎn)的圓和拋物線在點(diǎn)H處有相同的切線,求點(diǎn)H的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案