分析 (1)設(shè)等差數(shù)列{an}的公差為d≠0,又a1,a2,a4成等比數(shù)列,可得${a}_{2}^{2}$=a1a4,再利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)由bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂項(xiàng)求和”方法即可得出.
解答 (1)解:設(shè)等差數(shù)列{an}的公差為d≠0,∵a1,a2,a4成等比數(shù)列,
∴${a}_{2}^{2}$=a1a4,∴(2+d)2=2(2+3d),化為:d2-2d=0,d≠0,解得d=2.
∴an=2+2(n-1)=2n.
(2)證明:bn=$\frac{1}{({a}_{n}+1)^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴數(shù)列{bn}的前n項(xiàng)和為Sn=$\frac{1}{4}$$[(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{4}(1-\frac{1}{n+1})$$<\frac{1}{4}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}-1}}{2}-\frac{{\sqrt{2}+1}}{2}i$ | B. | $\frac{{\sqrt{2}+1}}{2}-\frac{{\sqrt{2}-1}}{2}i$ | C. | $\frac{1}{2}+\frac{3}{2}i$ | D. | $\frac{1}{2}-\frac{3}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -18 | B. | -20 | C. | 18 | D. | 20 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com