(2008•和平區(qū)三模)在△ABC中,∠A滿足:
3
sinA+cosA=1,AB=2cm,BC=2
3
cm,則∠A=
120
120
度;S△ABC=
3
3
cm2
分析:已知等式左邊提取2變形后,利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),利用特殊角的三角函數(shù)值求出A的度數(shù),
解答:解:∵
3
sinA+cosA=2(
3
2
sinA+
1
2
cosA)=2sin(A+30°)=1,即sin(A+30°)=
1
2
,
∴A+30°=30°或A+30°=150°,即A=0(舍去)或A=120°;
∵cosA=-
1
2
,AB=2cm,BC=2
3
cm,
∴由余弦定理得:BC2=AB2+AC2-2AB•ACcosA,即12=4+AC2+2AC,
解得:AC=2,或AC=-4(舍去),
則S△ABC=
1
2
AB•ACsinA=
3
cm2
故答案為:120;
3
點評:此題考查了余弦定理,以及三角形的面積公式,熟練掌握余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)已知函數(shù)f(x)=(
1
3
)x-log2x
,若實數(shù)x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)如圖,在△ABC中,∠ABC=∠ACB=30°,AB,AC邊上的高分別為CD,BE,則以B,C為焦點且經(jīng)過D、E兩點的橢圓與雙曲線的離心率的和為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)在△ABC,設角A,B,C的對邊分別為a,b,c,且
cosC
cosB
=
2a-c
b
,則角B=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2,(n=1,2,3…)數(shù)列{bn}中,b1=1,點P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)記Sn=a1b1+a2b2+…+anbn,求滿足Sn<167的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)若圓C:x2+y2-ax+2y+1=0和圓x2+y2=1關于直線y=x-1對稱,動圓P與圓C相外切且直線x=-1相切,則動圓圓心P的軌跡方程是( 。

查看答案和解析>>

同步練習冊答案