分析 (Ⅰ)通過證明DE∥AC,進(jìn)而DE∥A1C1,據(jù)此可得直線DE∥平面A1C1F1;
(Ⅱ)證明B1D⊥A1C1,利用A1F⊥B1D,A1F∩A1C1=A1,即可證明B1D⊥平面A1C1F.
解答 證明:(Ⅰ)∵D,E分別為AB,BC的中點,
∴DE為△ABC的中位線,
∴DE∥AC,
∵ABC-A1B1C1為棱柱,
∴AC∥A1C1,
∴DE∥A1C1,
∵A1C1?平面A1C1F,且DE?平面A1C1F,
∴DE∥平面A1C1F;
(Ⅱ)由題意,A1C1⊥平面A1B,B1D?平面A1B,
∴B1D⊥A1C1,
∵A1F⊥B1D,A1F∩A1C1=A1,
∴B1D⊥平面A1C1F.
點評 本題考查線面平行、垂直的證明,考查學(xué)生分析解決問題的能力,正確運用線面平行、垂直的判定定理是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+$\frac{1}{x}$)cosx | B. | (x+$\frac{1}{x}$)sinx | C. | xcosx | D. | $\frac{cosx}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,n∥β,m⊥n,則α⊥β | B. | 若m∥n,n∥α,α∥β,則m∥β | ||
C. | α∥β,m⊥α,n∥β⇒m⊥n | D. | 若α⊥β,α∩β=n,m⊥n,則m⊥α |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com