5.(1+tan20°)(1+tan25°)=( 。
A.2B.1C.-1D.-2

分析 把所給的式子展開,利用兩角和的正切公式,化簡(jiǎn)可得結(jié)果.

解答 解:(1+tan20°)(1+tan25°)=1+tan20°+tan25°+tan20°tan25°=1+tan(20°+25°)•(1-tan20°•tan25°)+tan20°tan25°
=1+1-tan20°•tan25°)+tan20°•tan25°=2,
故選:A.

點(diǎn)評(píng) 本題主要考查兩角和的正切公式的變形應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x4-2x3,g(x)=-4x2+4x-2,x∈R.
(1)求f(x)的最小值;
(2)證明:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)l,m,n表示三條直線,α,β,γ表示三個(gè)平面,則下列命題中不成立的是( 。
A.若m?α,n?α,m∥n,則n∥α
B.若α⊥γ,α∥β,則β⊥γ
C.若m?β,n是l在β內(nèi)的射影,若m⊥l,則m⊥n
D.若α⊥β,α∩β=m,l⊥m,則l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某種飲料每箱裝6瓶,庫(kù)存23箱未開封的飲料,現(xiàn)欲對(duì)這種飲料進(jìn)行質(zhì)量檢測(cè),工作人員需從中隨機(jī)取出10瓶,若采用系統(tǒng)抽樣法,則要剔除的飲料瓶數(shù)是(  )
A.2B.8C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是( 。
A.$\frac{|cos3x|}{x}$B.$\frac{1+cos2x}{2x}$
C.$\frac{(4{x}^{2}-{π}^{2})(4{x}^{2}-9{π}^{2})}{{x}^{5}}$D.$\frac{|sin2x|}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知p:-1<x<0,q:m-1<x<m+1,若p是q的充分條件,則m的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,則ω=$\frac{y-1}{x+1}$的取值范圍是(  )
A.[-1,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{3}$]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=80,a4=5,則a13=(  )
A.19B.21C.23D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax2-ax,其中a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案