3.已知下列函數(shù)在x=0處可導(dǎo),求a和b的值.
y=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{a+bx,x≥0}\end{array}\right.$.

分析 由函數(shù)f(x)在點(diǎn)x=0處可導(dǎo),知函數(shù)f(x)在點(diǎn)x=0處連續(xù),然后由ex的右導(dǎo)數(shù)等于ax+b的左導(dǎo)數(shù)求得a值,再由連續(xù)求得b值.

解答 解:∵函數(shù)y=f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{a+bx,x≥0}\end{array}\right.$.在點(diǎn)x=0處可導(dǎo),
∴函數(shù)f(x)在點(diǎn)x=0處連續(xù),
f(x)在x=0處可導(dǎo),則其左右導(dǎo)數(shù)均存在且相等,且f(x)在x=0處連續(xù).
ax+b與ex在x=0處的右導(dǎo)數(shù)及左導(dǎo)數(shù)均存在.
ex的左導(dǎo)數(shù)為1,
ax+b的右導(dǎo)數(shù)為a,故a=1;
由連續(xù)知:a×0+b=e0=1,即b=1.
故a=1,b=1.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)算,考查了函數(shù)可導(dǎo)與連續(xù)的關(guān)系,根據(jù)昨?qū)?shù)和右導(dǎo)數(shù)的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)A(1,$\frac{3}{2}$)且離心率e=$\frac{1}{2}$
(1)求橢圓E的方程
(2)若直線l:y=x+m與橢圓E交于相異的兩點(diǎn)P和Q,求實(shí)數(shù)m取值范圍.
(3)在(2)的情況下,求△OPQ的面積取得最大時(shí)直線l的方程(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列{an}、{bn}滿足a1=b1=1,an+1=an+2bn,bn+1=an+bn,則下列結(jié)論正確的是( 。
A.只有有限個(gè)正整數(shù)n使得an<$\sqrt{2}$bnB.只有有限個(gè)正整數(shù)n使得an>$\sqrt{2}$bn
C.數(shù)列{|an-$\sqrt{2}$bn|}是遞增數(shù)列D.數(shù)列{|$\frac{{a}_{n}}{_{n}}$-$\sqrt{2}$|}是遞減數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,1),B(7,-1),C(-2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為D,求△BCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等比數(shù)列{an}中,a1=1,a5=16,則公比q為( 。
A.±2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=x2-2x+1(x≥1)的反函數(shù)f-1(x)=( 。
A.1+$\sqrt{x}$B.1±$\sqrt{x}$C.1-$\sqrt{x}$D.$\sqrt{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.復(fù)數(shù)${(\frac{{1-\sqrt{3}i}}{i})^2}$=( 。
A.-3+4iB.2+2$\sqrt{3}$iC.3-4D.-3-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=ln(2x+3)+x2
(Ⅰ)討論f(x)的單調(diào)性;          
(Ⅱ)求f(x)在區(qū)間[0,1]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.sin27°cos18°+cos27°sin18°的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案