【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn= ,數(shù)列{cn}的前n項(xiàng)和為Tn .
①求Tn;
②對于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:∵4Sn=(2n﹣1)an+1+1,
∴4Sn﹣1=(2n﹣3)an+1,n≥2
∴4an=(2n﹣1)an+1﹣(2n﹣3)an,
整理得(2n+1)an=(2n﹣1)an+1,
即 = ,
∴ =3, = ,…, =
以上各式相乘得 =2n﹣1,又a1=1,
所以an=2n﹣1,
(2)解:①∵cn= = = ( ﹣ ),
∴Tn= (1﹣ + ﹣ +…+ ﹣ )= (1﹣ )= ,
②由①可知Tn= ,
∴ ≥ ,
∵kx2﹣6kx+k+7+3Tn>0恒成立,
∴kx2﹣6kx+k+8>0恒成立,
當(dāng)k=0時(shí),8>0恒成立,
當(dāng)k≠0時(shí),則得 ,解得0<k<1,
綜上所述實(shí)數(shù)k的取值范圍為[0,1)
【解析】(1)充分利用已知4Sn=(2n﹣1)an+1+1,將式子中n換成n﹣1,然后相減得到an與an+1的關(guān)系,利用累乘法得到數(shù)列的通項(xiàng),(2)①利用裂項(xiàng)求和,即可求出Tn ,
②根據(jù)函數(shù)的思想求出 ≥ ,問題轉(zhuǎn)化為kx2﹣6kx+k+8>0恒成立,分類討論即可.
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項(xiàng)公式即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高三年級從甲、乙兩個班級各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生成績的平均分是85,乙班學(xué)生成績的中位數(shù)是89.
(1)求和的值;
(2)計(jì)算乙班7位學(xué)生成績的方差.
(3)從成績在90分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為, .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與雙曲線的左支有兩個交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為, ,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 是兩條不同直線, , 是兩個不同平面,則下列命題正確的是( )
A. 若, 垂直于同一平面,則與平行
B. 若, 平行于同一平面,則與平行
C. 若, 不平行,則在內(nèi)不存在與平行的直線
D. 若, 不平行,則與不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,設(shè).
(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;
(2)在中,分別為內(nèi)角的對邊,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為△ABC的三個內(nèi)角,且其對邊分別為a、b、c,若cosBcosC﹣sinBsinC= .
(1)求角A;
(2)若a=2 ,b+c=4,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 的圖象在點(diǎn)處的切線與直線平行.
(1)求的值;
(2)若函數(shù)(),且在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: (為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:
①當(dāng)時(shí), 中直線的斜率為;
②中的所有直線可覆蓋整個坐標(biāo)平面.
③當(dāng)時(shí),存在某個定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;
④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;
其中正確的是__________(寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 為的中點(diǎn), 在線段上,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時(shí),求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com