【題目】已知圓,直線,.
(1)證明:不論取任何實(shí)數(shù),直線與圓恒交于兩點(diǎn);
(2)當(dāng)直線被圓截得的弦長最短時(shí),求此最短弦長及直線的方程.
【答案】(1)見解析(2)最短弦長為.直線的方程為.
【解析】
(1)把直線的方程變形后,根據(jù)直線恒過定點(diǎn),得到關(guān)于與的二元一次方程組,求出方程組的解即為直線恒過的定點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求出此點(diǎn)到圓心的距離,發(fā)現(xiàn)小于圓的半徑,得到此點(diǎn)在圓內(nèi),故直線與圓恒交于兩點(diǎn);
(2)由平面幾何知識可知,當(dāng)直線與垂直時(shí),所截取的線段最短,由圓心和定點(diǎn)的坐標(biāo)求出直線的斜率,根據(jù)兩直線垂直時(shí)斜率的乘積為,求出直線的斜率,由的坐標(biāo)和求出的斜率寫出直線的方程,再由與的坐標(biāo),利用兩點(diǎn)間的距離公式求出即為弦心距,根據(jù)圓的半徑,弦心距及弦的一半構(gòu)成的直角三角形,利用勾股定理即可求出此時(shí)的弦長.
解:(1)證明:因?yàn)?/span>,
所以,
因?yàn)?/span>,所以
故直線過定點(diǎn).
因?yàn)閳A的圓心為,,,則點(diǎn)在圓內(nèi).
所以直線與圓恒交于兩點(diǎn).
(2)由(1)知直線過定點(diǎn),所以當(dāng)直線被圓截得的弦長最短時(shí)有,
弦心距,
所以最短弦長為.
因?yàn)?/span>,所以,故直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次.得到甲、乙兩位學(xué)生成績的莖葉圖.
(1)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,對預(yù)賽成績的平均值和方差進(jìn)行分析,你認(rèn)為選派哪位學(xué)生去參加更合適?請說明理由;
(2)求在甲同學(xué)的8次預(yù)賽成績中,從不小于80分的成績中隨機(jī)抽取2個(gè)成績,列出所有結(jié)果,并求抽出的2個(gè)成績均大于85分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人是“微信控”的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有如下三個(gè)命題:
甲:相交直線l、m都在平面內(nèi),并且都不在平面內(nèi);
乙:直線l、m中至少有一條與平面相交;
丙:平面與平面相交.
當(dāng)甲成立時(shí)
A. 乙是丙的充分而不必要條件
B. 乙是丙的必要而不充分條件
C. 乙是丙的充分且必要條件
D. 乙既不是丙的充分條件又不是丙的必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點(diǎn),其左右焦點(diǎn)分別為,,三角形的面積為.
Ⅰ求橢圓C的方程;
Ⅱ已知A,B是橢圓C上的兩個(gè)動(dòng)點(diǎn)且不與坐標(biāo)原點(diǎn)O共線,若的角平分線總垂直于x軸,求證:直線AB與兩坐標(biāo)軸圍成的三角形一定是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 5 | ||
不獲獎(jiǎng) | |||
合計(jì) | 200 |
參考公式: (其中為樣本容量)
隨機(jī)變量的概率分布:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求的值;
(2)填寫上方的列聯(lián)表,并判斷能否有超過的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),當(dāng)時(shí),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論錯(cuò)誤的結(jié)論是( )
A.B.
C.與平面所成的角為30°D.四面體的體積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com