11.若函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在(-∞,+∞)單調(diào)遞增,則a的取值范圍是( 。
A.[-1,1]B.[-1,$\frac{1}{3}}$]C.[-$\frac{1}{3}$,$\frac{1}{3}}$]D.[-1,-$\frac{1}{3}}$]

分析 求出f(x)的導數(shù),由題意可得f′(x)≥0恒成立,設t=cosx(-1≤t≤1),即有5-4t2+3at≥0,對t討論,分t=0,0<t≤1,-1≤t<0,分離參數(shù),運用函數(shù)的單調(diào)性可得最值,解不等式即可得到所求范圍.

解答 解:函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx的導數(shù)為f′(x)=1-$\frac{2}{3}$cos2x+acosx,
由題意可得f′(x)≥0恒成立,
即為1-$\frac{2}{3}$cos2x+acosx≥0,
即有$\frac{5}{3}$-$\frac{4}{3}$cos2x+acosx≥0,
設t=cosx(-1≤t≤1),即有5-4t2+3at≥0,
當t=0時,不等式顯然成立;
當0<t≤1時,3a≥4t-$\frac{5}{t}$,
由4t-$\frac{5}{t}$在(0,1]遞增,可得t=1時,取得最大值-1,
可得3a≥-1,即a≥-$\frac{1}{3}$;
當-1≤t<0時,3a≤4t-$\frac{5}{t}$,
由4t-$\frac{5}{t}$在[-1,0)遞增,可得t=-1時,取得最小值1,
可得3a≤1,即a≤$\frac{1}{3}$.
綜上可得a的范圍是[-$\frac{1}{3}$,$\frac{1}{3}$].
另解:設t=cosx(-1≤t≤1),即有5-4t2+3at≥0,
由題意可得5-4+3a≥0,且5-4-3a≥0,
解得a的范圍是[-$\frac{1}{3}$,$\frac{1}{3}$].
故選:C.

點評 本題考查導數(shù)的運用:求單調(diào)性,考查不等式恒成立問題的解法,注意運用參數(shù)分離和換元法,考查函數(shù)的單調(diào)性的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,△OAB是等腰三角形,∠AOB=120°.以O為圓心,$\frac{1}{2}$OA為半徑作圓.
(Ⅰ)證明:直線AB與⊙O相切;
(Ⅱ)點C,D在⊙O上,且A,B,C,D四點共圓,證明:AB∥CD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在極坐標系中,直線ρcosθ-$\sqrt{3}$ρsinθ-1=0與圓ρ=2cosθ交于A,B兩點,則|AB|=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.
(1)求ω的值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點P在平面ABC內(nèi)的正投影為點D,D在平面PAB內(nèi)的正投影為點E,連接PE并延長交AB于點G.
(Ⅰ)證明:G是AB的中點;
(Ⅱ)在圖中作出點E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設集合A={y|y=2x,x∈R},B={x|x2-1<0},則A∪B=(  )
A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在平面直角坐標系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),設直線l與橢圓C相交于A,B兩點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知a,b∈R,i是虛數(shù)單位,若(1+i)(1-bi)=a,則$\frac{a}$的值為2.

查看答案和解析>>

同步練習冊答案