16.數(shù)列{xn}中,x1=tanα,且xn+1=$\frac{1+{x}_{n}}{1-{x}_{n}}$,求出x1,x2,x3并猜想通項公式xn

分析 利用和角的正切公式,即可得出結(jié)論.

解答 解:∵x1=tanα,xn+1=$\frac{1+{x}_{n}}{1-{x}_{n}}$,
∴x2=tan($\frac{π}{4}$+α),x3=tan(2•$\frac{π}{4}$+α),x4=tan(3•$\frac{π}{4}$+α),
猜想通項公式xn=tan[(n-1)•$\frac{π}{4}$+α].

點評 本題考查歸納推理,考查和角的正切公式,比較基礎.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知A(x1,y1),B(x2,y2)是拋物線y2=x上相異的兩點,且在x軸同側(cè),點C(1,0).若直線AC,BC的斜率互為相反數(shù),則y1y2等于( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x
(1)求函數(shù)f(x)的最小正周期并求出單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2acosC+c=2b,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.正整數(shù)按圖表的規(guī)律排列,則上起第17行,左起第11列的數(shù)應為117.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=sin({x+\frac{7}{4}π})+cos({x-\frac{3}{4}π})$
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=$\frac{4}{5}$,cos(β+α)=-$\frac{4}{5}$,0<α<β≤$\frac{π}{2}$,求$f({2β-\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x1,x2是方程ex-mx=0的兩解,其中x1<x2,則下列說法正確的是( 。
A.x1x2-1>0B.x1x2-1<0C.x1x2-2>0D.x1x2-2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x2+ax+b(a,b∈R),如果?x0,使f(x0)=0.且?x∈R,都有f(x)≥f(x0)成立.又若關(guān)于x的不等式f(x)<c的解集為(m,m+8),則實數(shù)c的值為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)y=$\frac{x+1}{{x}^{2}+5x+6}$(x>-1)的最大值是3$-2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+1)=f(x-1),當0≤x≤1時,f(x)=x2,若函數(shù)y=f(x)-x-a在[0,2]內(nèi)有三個不同的零點,則實數(shù)a的取值范圍為$-\frac{1}{4}<a<0$.

查看答案和解析>>

同步練習冊答案