【題目】已知指數(shù)函數(shù)的圖象經(jīng)過點(diǎn),在區(qū)間的最小值;
(1)求函數(shù)的解析式;
(2)求函數(shù)的最小值的表達(dá)式;
(3)是否存在同時(shí)滿足以下條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>;若存在,求出m,n的值;若不存在,說明理由.
【答案】(1)(2)(3)不存在,理由見解析
【解析】
(1)設(shè),由點(diǎn)在圖象上,得出,求出的值,即可得出函數(shù)的解析式;
(2)利用換元法得出,討論的取值,由二次函數(shù)的性質(zhì)得出函數(shù)的最小值的表達(dá)式;
(3)當(dāng)時(shí),函數(shù)在上為減函數(shù),由值域?yàn)?/span>,列出方程組,得出,由于,則不存在滿足條件的的值.
(1)設(shè),且
∵指數(shù)函數(shù)的圖象經(jīng)過點(diǎn),∴,即,∴,
(2)令,∵
∴
∴,對(duì)稱軸為
當(dāng)時(shí),在上為增函數(shù),此時(shí)當(dāng)時(shí),
當(dāng)時(shí),在上為減函數(shù),在上為增函數(shù),此時(shí)當(dāng)時(shí),
當(dāng)時(shí),在上為減函數(shù),此時(shí)當(dāng)時(shí),
∴.
(3)由(2)得時(shí),在中為減函數(shù),若此時(shí)值域?yàn)?/span>.則,即,即,與矛盾,故不存在滿足條件的的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,.
(1)是否存在實(shí)數(shù),使數(shù)列是等比數(shù)列?若存在,求的值;若不存在,請說明理由;
(2)若是數(shù)列的前項(xiàng)和,求滿足的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足
(1)求函數(shù)的解析式;
(2)令
若函數(shù)在上是單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;
求函數(shù)在的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測:
車間 | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測,求這2件產(chǎn)品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A.若為真命題,則為真命題;
B.“”是“”的充分不必要條件;
C.命題“若,則”的否命題為“若,則”;
D.已知命題,使得,則,使得。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,,,,且,,點(diǎn)在線段上.
(1)求證:平面;
(2)若二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)函數(shù)是奇函數(shù),當(dāng)時(shí),.
(1)求的解析式.
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com