已知圓C:x2+y2-2x+4y-4=0.問(wèn)在圓C上是否存在兩點(diǎn)A、B關(guān)于直線y=kx-1對(duì)稱,且以AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫出直線AB的方程;若不存在,說(shuō)明理由.
分析:求出圓的圓心坐標(biāo),代入直線方程求出直線的斜率,推出AB的斜率,設(shè)出AB的方程,聯(lián)立AB與圓的方程,利用x1x2+y1y2=0,求出b的值,即可求出AB的方程.
解答:解:圓C:x2+y2-2x+4y-4=0的圓心坐標(biāo)(1,-2),
因?yàn)樵趦牲c(diǎn)A、B關(guān)于直線y=kx-1對(duì)稱,所以直線經(jīng)過(guò)圓的圓心,
所以-2=k-1,k=-1.直線AB的斜率為:1;
設(shè)直線AB的方程為x-y+b=0;對(duì)稱軸方程為:x+y-1=0,
x-y+b=0
x2+y2-2x+4y-4=0
可得2x2+2(b+2)x+b2+4b-4=0,
x1x2=
b2+4b-4
2
,x1+x2=-b-2.
以AB為直徑的圓經(jīng)過(guò)原點(diǎn).
x1x2+y1y2=0,2×
b2+4b-4
2
+b2+b(-b-2)=0,解得b=±
5
-1
所以所求直線AB的方程為x-y-
5
-1=0或x-y+
5
+1=0.
點(diǎn)評(píng):本題考查圓的方程的綜合應(yīng)用,直線與圓的位置關(guān)系,考查轉(zhuǎn)化思想與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案