(本題滿分16分)

設(shè)f(x)=x3,等差數(shù)列{an}中a3=7,,記Sn,令bnanSn,數(shù)列的前n項(xiàng)和為Tn

(1)求{an}的通項(xiàng)公式和Sn;                  

(2)求證:Tn

(3)是否存在正整數(shù)m,n,且1<mn,使得T1Tm,Tn成等比數(shù)列?若存在,求出mn的值,若不存在,說明理由.

解:(1)設(shè)數(shù)列的公差為,由

解得,=3,∴

Sn.…4分

(2)  ,∴  

。                     ………………………8分

(3)由(2)知,    ∴,

  ∵成等比數(shù)列.

,即………………………9分

當(dāng)時(shí),7,=1,不合題意;

當(dāng)時(shí),,=16,符合題意;………………………10分

當(dāng)時(shí),,無正整數(shù)解;當(dāng)時(shí),,無正整數(shù)解;

當(dāng)時(shí),,無正整數(shù)解;

當(dāng)時(shí),,無正整數(shù)解; ………………………12分

當(dāng)時(shí), ,則,而,

所以,此時(shí)不存在正整數(shù)m,n,且1<m<n,使得成等比數(shù)列. ………15分

綜上,存在正整數(shù)m=2,n=16,且1<m<n,使得成等比數(shù)列.…………16分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

本題滿分16分)兩個(gè)數(shù)列{an},{bn},滿足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(參考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求證:{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)、是常數(shù),且),對(duì)定義域內(nèi)任意、),恒有成立.

(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;

(2)求的取值范圍,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)已知數(shù)列的前項(xiàng)和為,且.?dāng)?shù)列中,,

 .(1)求數(shù)列的通項(xiàng)公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項(xiàng)公式;(3)求證:①;②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省私立無錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)

已知函數(shù)

(1)判斷并證明上的單調(diào)性;

(2)若存在,使,則稱為函數(shù)的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求的值;

(3)若上恒成立 , 求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案