【題目】經(jīng)過點P(3,2),且在兩坐標(biāo)軸上的截距相等的直線方程為(寫出一般式)___.
【答案】x+y-5=0 或2x-3y=0
【解析】
當(dāng)直線經(jīng)過原點時,在兩坐標(biāo)軸上的截距相等,可得其方程為2x﹣3y=0;當(dāng)直線不經(jīng)過原點時,可得它的斜率為﹣1,由此設(shè)出直線方程并代入P的坐標(biāo),可求出其方程為x+y﹣5=0,最后加以綜合即可得到答案.
當(dāng)直線經(jīng)過原點時,設(shè)方程為y=kx,
∵直線經(jīng)過點P(3,2),∴2=3k,解之得k,
此時的直線方程為yx,即2x﹣3y=0;
當(dāng)直線不經(jīng)過原點時,設(shè)方程為x+y+c=0,
將點P(3,2)代入,得3+2+c=0,解之得c=﹣5,此時的直線方程為x+y﹣5=0.
綜上所述,滿足條件的直線方程為:2x﹣3y=0或x+y﹣5=0.
故答案為:x+y-5=0 或2x-3y=0.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1: +y2=1(m>1)與雙曲線C2: ﹣y2=1(n>0)的焦點重合,e1 , e2分別為C1 , C2的離心率,則( )
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4sinxcos(x+)+1.
(1)求f()的值;
(2)求f(x)的最小正周期;
(3)求f(x)在區(qū)間[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,a3+a4=4,a5+a7=6.
(1)求{an}的通項公式;
(2)設(shè)bn=[an],求數(shù)列{bn}的前10項和,其中[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A是橢圓E: =1的左頂點,斜率為k(k>0)的直線交E與A,M兩點,點N在E上,MA⊥NA.
(1)當(dāng)|AM|=|AN|時,求△AMN的面積
(2)當(dāng)2|AM|=|AN|時,證明: <k<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,F(xiàn)是橢圓C: =1(a>b>0)的左焦點,A,B分別為C的左,右頂點.P為C上一點,且PF⊥x軸,過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+c,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中a為常數(shù)).
(1)當(dāng)a=1時,求f(x)在上的值域;
(2)若當(dāng)x∈[0,1]時,不等式恒成立,求實數(shù)a的取值范圍;
(3)設(shè),是否存在正數(shù)a,使得對于區(qū)間上的任意三個實數(shù)m,n,p,都存在以f(g(m)),f(g(n)),f(g(p))為邊長的三角形?若存在,試求出這樣的a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2有兩個零點.
(1)求a的取值范圍;
(2)設(shè)x1 , x2是f(x)的兩個零點,證明:x1+x2<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com