【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣ |+|x+2a|(a∈R,且a≠0)
(Ⅰ)當a=﹣1時,求不等式f(x)≥5的解集;
(Ⅱ)證明:f(x)≥2

【答案】(Ⅰ)解:a=﹣1時,f(x)=|x+1|+|x﹣2|≥5, x≥2時,x+1+x﹣2≥5,解得:x≥3,
﹣1<x<2時,x+1+2﹣x≥5,無解,
x≤﹣1時,﹣x﹣1﹣x+2≥5,解得:x≤﹣2,
故不等式的解集是{x|x≥3或x≤﹣2}.
(Ⅱ)證明:f(x)=|x﹣ |+|x+2a|≥|x+2a+ ﹣x|=|2a|+| |≥2 ,
當且僅當|2a|=| |,即a= 時”=“成立.
【解析】(Ⅰ)當a=﹣1時,通過討論x的范圍求出不等式的解集即可;(Ⅱ)根據(jù)絕對值的性質以及基本不等式的性質證明即可.
【考點精析】關于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1200編號,并按編號順序平均分為40組(15號,610,196200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是 。若用分層抽樣方法,則40歲以下年齡段應抽取 .

2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅、舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),其主體造型的平面圖是由兩個相同的矩形ABCD和矩形EFGH構成的面積是200 m2的十字形區(qū)域,現(xiàn)計劃在正方形MNPQ上建一花壇,造價為4 200元/m2,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/m2,再在四個空角上鋪草坪,造價為80元/m2.

(1)設總造價為S元,AD的邊長為x m,試建立S關于x的函數(shù)解析式;

(2)計劃至少要投多少萬元才能建造這個休閑小區(qū)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓內接四邊形ABCD中,AB=3,AD=2,∠BCD=1200

(1)求線段BD的長與圓的面積

(2)求四邊形ABCD的周長的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】自貢某個工廠于2016年下半年對生產(chǎn)工藝進行了改造(每半年為一個生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個生產(chǎn)周期內與其中位數(shù)誤差在±5范圍內(含±5)的產(chǎn)品為優(yōu)質品,與中位數(shù)誤差在±15范圍內(含±15)的產(chǎn)品為合格品(不包括優(yōu)質品),與中位數(shù)誤差超過±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質品可獲利潤20元,生產(chǎn)一件合格品可獲利潤10元,生產(chǎn)一件次品要虧損10元.

(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤的分布列和期望;
(Ⅱ)是否有95%的把握認為“優(yōu)質品與生產(chǎn)工藝改造有關”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點橫坐標構成一個公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個單位
B.向左平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的右焦點為,過的直線交于兩點,點的坐標為.

(1)當軸垂直時,求直線的方程;

(2)設為坐標原點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=x+1+|3﹣x|,x≥﹣1.
(I)求不等式f(x)≤6的解集;
(Ⅱ)若f(x)的最小值為n,正數(shù)a,b滿足2nab=a+2b,求2a+b的最小值.

查看答案和解析>>

同步練習冊答案