【題目】某化肥廠甲、乙兩個(gè)車間包裝肥料,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一包產(chǎn)品,稱其重量,分別記錄抽查數(shù)據(jù)如下:

102

101

99

98

103

98

99

110

115

90

85

75

115

110

(1)這種抽樣方法是哪一種?
(2)將兩組數(shù)據(jù)用莖葉圖表示.
(3)將兩組數(shù)據(jù)進(jìn)行比較,說(shuō)明哪個(gè)車間產(chǎn)品較穩(wěn)定.

【答案】解:(1)根據(jù)系統(tǒng)抽樣的定義可知,每隔30分鐘抽取一包產(chǎn)品,抽取的時(shí)間間隔相同,滿足系統(tǒng)抽樣的定義,
∴這種抽樣方法是系統(tǒng)抽樣.
(2)將兩組數(shù)據(jù)用莖葉圖表示如圖:.
(3)甲的平均數(shù)為(102+101+99+98+103+98+99)=100.
乙的平均數(shù)為(110+115+90+85+75+115+110)=100.
由莖葉圖中的數(shù)據(jù)可知甲的成績(jī)主要集中在90和100附近,乙的成績(jī)比較分散,
∴甲比乙穩(wěn)定.

【解析】(1)根據(jù)抽樣方法的定義進(jìn)行判斷.
(2)利用莖葉圖的定義將兩組數(shù)據(jù)用莖葉圖表示.
(3)根據(jù)莖葉圖中的數(shù)據(jù)的分布,即可判斷兩組數(shù)據(jù)的穩(wěn)定性.
【考點(diǎn)精析】利用用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征對(duì)題目進(jìn)行判斷即可得到答案,需要熟知用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差.在隨機(jī)抽樣中,這種偏差是不可避免的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)總體中含有4個(gè)個(gè)體,從中抽取一個(gè)容量為2的樣本,說(shuō)明為什么在抽取過(guò)程中每個(gè)個(gè)體被抽取的概率都相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實(shí)數(shù)的值;

(Ⅱ)證明:當(dāng)時(shí),

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩名籃球運(yùn)動(dòng)員2012年賽季每場(chǎng)比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合P={x|a+1≤x≤2a+1},Q={x|﹣2≤x≤5}
(1)若a=3,求集合(RP)∩Q;
(2)若PQ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= ,(x∈(﹣∞,0]∪[2,+∞))的值域?yàn)椋?/span>
A.[0,4]
B.[0,2)∪(2,4]
C.(﹣∞,0]∪[4,+∞)
D.(﹣∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,其中函數(shù)的圖象在點(diǎn)處的切線平行于軸.

(1)確定的關(guān)系;若,并試討論函數(shù)的單調(diào)性;

(2)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn) ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)求滿足不等式f(x)<0的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案