【題目】設a,b∈R,函數(shù) ,g(x)=ex(e為自然對數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內恒成立,求a的取值范圍.

【答案】(Ⅰ)f'(x)=x2+2ax+b,g'(x)=ex ,
由f'(0)=b=g'(0)=1,得b=1.
(Ⅱ)f'(x)=x2+2ax+1=(x+a)2+1﹣a2 ,
當a2≤1時,即﹣1≤a≤1時,f'(x)≥0,從而函數(shù)f(x)在定義域內單調遞增,
當a2>1時, ,此時
,f'(x)>0,則函數(shù)f(x)單調遞增;
,f'(x)<0,則函數(shù)f(x)單調遞減;
時,f'(x)>0,則函數(shù)f(x)單調遞增.
(Ⅲ)令h(x)=g'(x)﹣f'(x)=ex﹣x2﹣2ax﹣1,則h(0)=e0﹣1=0.h'(x)=ex﹣2x﹣2a,令u(x)=h'(x)=ex﹣2x﹣2a,則u'(x)=ex﹣2.
當x≤0時,u'(x)<0,從而h'(x)單調遞減,
令u(0)=h'(0)=1﹣2a=0,得
先考慮 的情況,此時,h'(0)=u(0)≥0;
又當x∈(﹣∞,0)時,h'(x)單調遞減,所以h'(x)>0;
故當x∈(﹣∞,0)時,h(x)單調遞增;
又因為h(0)=0,故當x<0時,h(x)<0,
從而函數(shù)g(x)﹣f(x)在區(qū)間(﹣∞,0)內單調遞減;
又因為g(0)﹣f(0)=0,所以g(x)>f(x)在區(qū)間(﹣∞,0)恒成立.
接下來考慮 的情況,此時,h'(0)<0,
令x=﹣a,則h'(﹣a)=ea>0.
由零點存在定理,存在x0∈(﹣a,0)使得h'(x0)=0,
當x∈(x0 , 0)時,由h'(x)單調遞減可知h'(x)<0,所以h(x)單調遞減,
又因為h(0)=0,故當x∈(x0 , 0)時h(x)>0.
從而函數(shù)g(x)﹣f(x)在區(qū)間(x0 , 0)單調遞增;
又因為g(0)﹣f(0)=0,所以當x∈(x0 , 0),g(x)<f(x).
綜上所述,若g(x)>f(x)在區(qū)間(﹣∞,0)恒成立,則a的取值范圍是
【解析】(Ⅰ)求出兩個函數(shù)的導數(shù),利用函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.列出方程即可求解b.
(Ⅱ)求出導函數(shù)f'(x)=,通過﹣1≤a≤1時,當a2>1時,分別判斷導函數(shù)的符號,推出函數(shù)的單調區(qū)間.
(Ⅲ)令h(x)=g'(x)﹣f'(x)=ex﹣x2﹣2ax﹣1,可得h(0)0.求出h'(x)=ex﹣2x﹣2a,令u(x)=h'(x)=ex﹣2x﹣2a,求出導數(shù)u'(x)=ex﹣2.當x≤0時,u'(x)<0,從而h'(x)單調遞減,求出 .考慮 的情況, 的情況,分別通過函數(shù)的單調性以及函數(shù)的最值,推出a的范圍即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計厚度,單位:米),按計劃容積為 立方米,且 ,假設建造費用僅與表面積有關(圓柱底部不計 ),已知圓柱部分每平方米的費用為2千元,半球部分每平方米的費用為2千元,設該容器的建造費用為y千元.

(1)求y關于r的函數(shù)關系,并求其定義域;
(2)求建造費用最小時的 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n),則f(6)=(
A.31
B.33
C.63
D.65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當有是實數(shù)解時,求實數(shù)的取值范圍;

(2)若,對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從6名男生和4名女生中任選4人參加比賽,設被選中女生的人數(shù)為隨機變量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=cosωx+1,2sinωx,b=cosωx-,cosωx), ω>0.

(Ⅰ)當ωx≠kπ+,k∈Z時,若向量c=(1,0),d=(,0),且(a-c)∥(b+d),求4sin2ωx-cosx的值;

(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對稱軸之間的距離為,當x∈[],g時,求函數(shù)f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù), , , 在等差數(shù)列, ,

表示數(shù)列的前2018項的和,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位長度,所得圖像對應的函數(shù)(

A. 在區(qū)間上單調遞減 B. 在區(qū)間上單調遞增

C. 在區(qū)間上單調遞減 D. 在區(qū)間上單調遞增

查看答案和解析>>

同步練習冊答案