精英家教網 > 高中數學 > 題目詳情
7.若數列{an}滿足:存在正整數T,對于任意正整數n都有an+T=an成立,則稱數列{an}為周期數列,周期為T.已知數列{an}滿足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,若a3=4,則m的所有可能取值為( 。
A.{6,$\frac{5}{4}$}B.{6,$\frac{5}{4}$,$\frac{2}{5}$}C.{6,$\frac{5}{4}$,$\frac{1}{5}$}D.{6,$\frac{1}{5}$}

分析 對m分類討論,利用遞推關系即可得出.

解答 解:數列{an}滿足a1=m(m>0),${a}_{n+1}=\left\{\begin{array}{l}{{a}_{n}-1,{a}_{n}>1}\\{\frac{1}{{a}_{n}},0<{a}_{n}≤1}\end{array}\right.$,a3=4,
①若m>2,則a2=m-1>1,∴a3=m-2=4,解得m=6.
②若m=2,則a2=m-1=1,∴a3=$\frac{1}{{a}_{2}}$=1≠4,舍去.
③若1<m<2,則a2=m-1∈(0,1),∴a3=$\frac{1}{m-1}$=4,解得m=$\frac{5}{4}$.
④若m=1,則a2=$\frac{1}{{a}_{1}}$=1,∴a3=$\frac{1}{{a}_{2}}$≠4,舍去.
⑤若0<m<1,則a2=$\frac{1}{{a}_{1}}$=$\frac{1}{m}$>1,∴a3=a2-1=$\frac{1}{m}$-1=4,解得m=$\frac{1}{5}$.
綜上可得:m∈$\{6,\frac{5}{4},\frac{1}{5}\}$.
故選:C.

點評 本題考查了等比數列的通項公式、遞推關系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

20.已知點F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,O為坐標原點,點P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為( 。
A.(1,+∞)B.[$\frac{\sqrt{10}}{2}$,+∞)C.(1,$\frac{\sqrt{10}}{2}$]D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.拋擲兩枚骰子,當至少有一枚5點或一枚6點出現時,就說這次試驗成功,求在30次試驗中成功次數X的均值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.若命題“?x∈[0,$\frac{π}{2}$],不等式exsinx≥kx”是真命題,則實數k的取值范圍是( 。
A.(-∞,1]B.(-∞,e${\;}^{\frac{π}{2}}$]C.(1,e${\;}^{\frac{π}{2}}$)D.[e${\;}^{\frac{π}{2}}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設a=tan$\frac{π}{7}$,b=$\frac{π}{7}$,c=sin$\frac{π}{7}$,則a,b,c的大小關系是( 。
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數學 來源:2016-2017學年山西忻州一中高一上學期新生摸底數學試卷(解析版) 題型:解答題

先化簡,再求值:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.若函數y=$\frac{ax+1}{x-3}$的反函數是它本身,則a的值為3.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.計算$(\frac{27}{8})^{-\frac{1}{3}}$-cosπ-$lo{g}_{2}({4}^{\frac{1}{3})}$+${{C}_{9}}^{7}$=37.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1(-c,0)、F2(c,0),P是橢圓C上一點,且|PF2|=|F1F2|,直線PF1與圓x2+y2=$\frac{{c}^{2}}{4}$相切,則橢圓的離心率為( 。
A.$\frac{1}{3}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步練習冊答案