【題目】已知函數(shù),正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,且滿足.若實(shí)數(shù)d是方程的一個(gè)解,那么下列三個(gè)判斷:①d<a;②d<b;③d<c中有可能成立的個(gè)數(shù)為( 。
A. 0 B. 1 C. 2 D. 3
【答案】D
【解析】
分情況討論,若f(a),f(b)>0和f(a),f(b),f(c)<0兩種情況,根據(jù)函數(shù)f(x)的單調(diào)性可推斷a,b,c,d的大。
f(x)在(0,+∞)上單調(diào)減,值域?yàn)?/span>R,正實(shí)數(shù)a,b,c是公差為正數(shù)的等差數(shù)列,所以a<b<c,f(a)f(b)f(c)<0,所以(1)若f(a),f(b)>0,f(c)<0.由f(d)=0知,a<b<d<c,③成立;(2)若f(a),f(b),f(c)<0.此時(shí)d<a<b<c,①②③成立.綜上,可能成立的個(gè)數(shù)為3.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)=atanx+bx3+cx(a、b、c∈R),選取a、b、c的一組值計(jì)算f(1)、f(﹣1),所得出的正確結(jié)果可能是( )
A.2和1
B.2和0
C.2和﹣1
D.2和﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫(xiě)所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E為棱CD的中點(diǎn),則( 。
A.A1E⊥DC1
B.A1E⊥BD
C.A1E⊥BC1
D.A1E⊥AC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.
(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線
(1)求證:不論取何實(shí)數(shù),直線與圓總有兩個(gè)不同的交點(diǎn);
(2)設(shè)直線與圓交于點(diǎn),當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且 ﹣ = ,S6=63.
(1)求{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N* , bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)n bn2}的前2n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com