【題目】某工廠為了對研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
(1)若銷量與單價(jià)服從線性相關(guān)關(guān)系,求該回歸方程;
(2)在(1)的前提下,若該產(chǎn)品的成本是5元/件,問:產(chǎn)品該如何確定單價(jià),可使工廠獲得最大利潤。
附:對于一組數(shù)據(jù),,……,
其回歸直線的斜率的最小二乘估計(jì)值為;
本題參考數(shù)值:.
【答案】(1)(2)為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為9.5元.
【解析】
(1)先根據(jù)公式求,再根據(jù)求即可求解;(2)先求出利潤的函數(shù)關(guān)系式,再求函數(shù)的最值.
解: (1)=
…
又
所以
故回歸方程為
(2)設(shè)該產(chǎn)品的售價(jià)為元,工廠利潤為元,當(dāng)時(shí),利潤,定價(jià)不合理。
由得,故
,
,
當(dāng)且僅當(dāng),即時(shí),取得最大值.
因此,為使工廠獲得最大利潤,該產(chǎn)品的單價(jià)應(yīng)定為9.5元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù),按十位數(shù)字為莖,個(gè)位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.
(1)求的值;
(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,若輸出的y值為5,則判斷框中可填入的條件是( )
A.i<3
B.i<4
C.i<5
D.i<6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知命題:實(shí)數(shù)滿足,命題:實(shí)數(shù)滿足方程表示的焦點(diǎn)在軸上的橢圓,且是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)設(shè)命題:關(guān)于的不等式的解集是;:函數(shù)的定義域?yàn)?/span>.若是真命題,是假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標(biāo)系中,點(diǎn).設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )
A. 的方程為
B. 在軸上存在異于的兩定點(diǎn),使得
C. 當(dāng)三點(diǎn)不共線時(shí),射線是的平分線
D. 在上存在點(diǎn),使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)的發(fā)展推動著科技的進(jìn)步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.
(1)用表示,并求實(shí)數(shù)使是等比數(shù)列;
(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達(dá)到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com