【題目】已知函數(shù)f(x)=xln x,g(x)=x3+ax2-x+2(a∈R).

(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為,求函數(shù)g(x)的解析式;

(2)若不等式2f(x)≤+2恒成立,求實(shí)數(shù)a的取值范圍.

【答案】(1);(2)

【解析】試題分析:(1)求出,由函數(shù)g(x)的單調(diào)遞減區(qū)間為可得是方程的兩根,根據(jù)韋達(dá)定理可求得的值,從而可得結(jié)果;(2)原不等式恒成立,等價(jià)于對(duì)恒成立,令,利用導(dǎo)數(shù)研究函數(shù) 的單調(diào)性,利用單調(diào)性求得h(x)最大值為-2,從而可得實(shí)數(shù)的取值范圍.

試題解析:(1)g′(x)=3x2+2ax-1由題意3x2+2ax-1<0的解集是,

即3x2+2ax-1=0的兩根是-和1.

將x=1或-代入方程3x2+2ax-1=0得a=-1.

所以g(x)=x3-x2-x+2.

(2)2f(x)≤g′(x)+2對(duì)x∈(0,+∞)恒成立,

即:2xln x≤3x2+2ax+1對(duì)x∈(0,+∞)恒成立,

可得a≥ln x-x-對(duì)x∈(0,+∞)恒成立,

設(shè)h(x)=ln x-,則h′(x)==-,

令h′(x)=0,得x=- (舍)或x=1,

當(dāng)0<x<1時(shí),h′(x)>0;當(dāng)x>1時(shí),h′(x)<0,

所以當(dāng)x=1時(shí),h(x)取得最大值,最大值為-2,

所以a≥-2.

所以實(shí)數(shù)a的取值范圍是[-2,+∞).

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值以及不等式恒成立問(wèn)題,屬于難題.不等式恒成立問(wèn)題常見(jiàn)方法:① 分離參數(shù)恒成立(即可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題(2)是利用方法 ① 求得 的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為體育迷”.

(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).

附:.

P(K2k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,,排列而成的項(xiàng)數(shù)列滿足:每項(xiàng)都大于它之前的所有項(xiàng)或者小于它之前的所有項(xiàng).

)滿足條件的數(shù)列中,寫(xiě)出所有的單調(diào)數(shù)列.

)當(dāng)時(shí),寫(xiě)出所有滿足條件的數(shù)列.

)滿足條件的數(shù)列的個(gè)數(shù)是多少?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,恒成立時(shí)的范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】環(huán)境污染已經(jīng)觸目驚心,環(huán)境質(zhì)量已經(jīng)成為“十三五”實(shí)現(xiàn)全面建成小康社會(huì)奮斗目標(biāo)的短板和瓶頸。綿陽(yáng)某化工廠每一天中污水污染指數(shù)與時(shí)刻(時(shí))的函數(shù)關(guān)系為其中為污水治理調(diào)節(jié)參數(shù),且

(1)若,求一天中哪個(gè)時(shí)刻污水污染指數(shù)最低;

(2)規(guī)定每天中的最大值作為當(dāng)天的污水污染指數(shù),要使該廠每天的污水污染指數(shù)不超過(guò),則調(diào)節(jié)參數(shù)應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(ax+1)(x≥0,a>0), .

(1)討論函數(shù)y=f(x)-g(x)的單調(diào)性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)時(shí)恒成立,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),角的終邊經(jīng)過(guò)點(diǎn).若的圖象上任意兩點(diǎn),且當(dāng)時(shí),的最小值為.

(1) 的值;

(2)求函數(shù)上的單調(diào)遞減區(qū)間;

(3)當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知2(tanA+tanB)=
(1)證明:a+b=2c;
(2)求cosC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無(wú)零點(diǎn),求實(shí)數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案