在下列關于直線與平面的命題中,真命題是(  )
A.若,則B.若,則
C.若,則D.若,則
D
構造模型一一淘汰
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面平面,是夾在兩平行平面間的兩條線段,,內,內,點,分別在,上,且.求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐PABCD中,側棱PA⊥底面ABCD,底面ABCD是矩形,問底面的邊BC上是否存在點E.
(1)使∠PED=90°;
(2)使∠PED為銳角. 證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體的棱長為1,過點A作平面的垂線,垂足為點
有下列四個命題
A.點的垂心
B.垂直平面
C.二面角的正切值為
D.點到平面的距離為
其中真命題的代號是                        .(寫出所有真命題的代號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體的棱長為,過點作平面的垂線,垂足為點,則以下命題中,錯誤的命題是(  )
A.點的垂心
B.垂直平面
C.的延長線經(jīng)過點
D.直線所成角為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

連結球面上兩點的線段稱為球的弦.半徑為4的球的兩條弦的長度分別等于、,每條弦的兩端都在球面上運動,則兩弦中點之間距離的最大值為         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

垂直于正方形所在的平面,,異面直線、所成的角的余弦為
(1)求的長;
(2)在平面內求一點(指出其位置),使

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐S-ABC的底面是正三角形,點A在側面SBC上的射影H是△SBC的垂心,SA=a,則此三棱錐體積最大值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE,AC∩BD=G
(1)求證:AE⊥平面BCE;
(2)求證:AE//平面BFD;
(3)求三棱錐C—BGF的體積

查看答案和解析>>

同步練習冊答案