(2010•天津)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若,則的值為 .

 

 

【解析】

試題分析:由題中條件:“四邊形ABCD是圓O的內(nèi)接四邊形”可得兩角相等,進而得兩個三角形相似得比例關系,最后求得比值.

【解析】
因為A,B,C,D四點共圓,

所以∠DAB=∠PCB,∠CDA=∠PBC,

因為∠P為公共角,

所以△PBC∽△PDA,所以

設PB=x,PC=y,

則有,

所以

故填:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:[同步]2015人教B版選修4-5 3.2用數(shù)學歸納法證明不等式練習卷(解析版) 題型:填空題

用數(shù)學歸納法證明1+++…+<n(n∈N*,n>1)”時,由n=k(k>1)時,第一步應驗證的不等式是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:填空題

(2014•汕頭二模)如圖,AB是圓O的直徑,PB,PE分別切圓O于B,C,若∠ACE=40°,則∠P= .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:選擇題

如圖,半徑為2的兩個等圓⊙O1與⊙O2外切于點P,過O1作⊙O2的兩條切線,切點分別為A,B,與⊙O1分別交于C,D,則APB與CPD的弧長之和為( )

A.2π B. C.π D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:選擇題

(2010•焦作二模)如圖,已知PA為⊙O的切線,PBC為⊙O的割線,PA=,PB=BC,⊙O的半徑OC=5,那么弦BC的弦心距OM=( )

A.4 B.3 C.5 D.6

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質與判定定理(解析版) 題型:填空題

(2014•瀘州三模)在△ABC中,O是其外接圓的圓心,其兩條中線的交點是G,兩條高線的交點是H,設OG=λGH,則λ的值為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質與判定定理(解析版) 題型:選擇題

圓內(nèi)接四邊形ABCD中,AD∥BC,AC與BD交于點E,在下圖中全等三角形的對數(shù)為( )

A.2對 B.3對 C.4對 D.5對

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 3.2復數(shù)的四則運算練習卷(解析版) 題型:填空題

=a+bi(i為虛數(shù)單位,a,b∈R),則a+b= .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-1 3.4導數(shù)在實際生活中的應用練習卷(解析版) 題型:解答題

如圖所示,設鐵路AB=50,B、C之間距離為10,現(xiàn)將貨物從A運往C,已知單位距離鐵路費用為2,公路費用為4,問在AB上何處修筑公路至C,可使運費由A到C最。

 

 

查看答案和解析>>

同步練習冊答案