精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義R上的偶函數,且當x∈[0,+∞)時,函數f(x)是單調遞減函數,則f(log25),f(log3 ),f(log53)大小關系是(
A.f(log3 )<f(log53)<f(log25)
B.f(log3 )<f(log25)<f(log53)
C.f(log53)<f(log3 )<f(log25)
D.f(log25)<f(log3 )<f(log53)

【答案】D
【解析】解:函數y=f(x)是定義在R上的偶函數,
∴f(log3 )=f(﹣log35)=f(log35).
∵log25>log35>log53>0,當x∈[0,+∞)時,函數f(x)是單調遞減函數,
∴f(log25)<f(log35)<f(log53),
∴f(log25)<f(log3 )<f(log53),
故選:D.
【考點精析】掌握奇偶性與單調性的綜合是解答本題的根本,需要知道奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數fx=ax2lnx。

(Ⅰ)當a=時,判斷fx)的單調性;(Ⅱ)設fx≤x3+4xlnx,在定義域內恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列結論中不正確的(
A.logab?logbc?logca=1
B.函數f(x)=ex滿足f(a+b)=f(a)?f(b)
C.函數f(x)=ex滿足f(a?b)=f(a)?f(b)
D.若xlog34=1,則4x+4x=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=|lgx|,且0<a<b<c時,有f(a)>f(c)>f(b),則(
A.(a﹣1)(c﹣1)>0
B.ac>1
C.ac=1
D.ac<1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數
(1)若f(x)是奇函數,求m的值;
(2)當m=1時,求函數f(x)在(﹣∞,0)上的值域,并判斷函數f(x)在(﹣∞,0)上是否為有界函數,請說明理由;
(3)若函數f(x)在[0,1]上是以3為上界的函數,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)為奇函數,當x≥0時,f(x)= .g(x)= ,
(1)求當x<0時,函數f(x)的解析式,并在給定直角坐標系內畫出f(x)在區(qū)間[﹣5,5]上的圖象;(不用列表描點)

(2)根據已知條件直接寫出g(x)的解析式,并說明g(x)的奇偶性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在下列命題中

①函數f(x)=在定義域內為單調遞減函數;

②已知定義在R上周期為4的函數f(x)滿足f(2﹣x)=f(2+x),則f(x)一定為偶函數;

③若f(x)為奇函數,則f(x)dx=2f(x)dx(a>0);

④已知函數f(x)=ax3+bx2+cx+d(a≠0),則a+b+c=0是f(x)有極值的充分不必要條件;

⑤已知函數f(x)=x﹣sinx,若a+b>0,則f(a)+f(b)>0.

其中正確命題的序號為________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》有如下問題:“今有蒲(水生植物名)生一日,長三尺;莞(植物名,俗稱水蔥、席子草)生一日,長一尺.蒲生日自半,莞生日自倍.問幾何日而長等?”意思是:今有蒲生長1日,長為3尺;莞生長1日,長為1尺.蒲的生長逐日減半,莞的生長逐日增加1倍.若蒲、莞長度相等,則所需的時間約為( )(結果保留一位小數.參考數據:)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某籃球隊對籃球運動員的籃球技能進行統(tǒng)計研究,針對籃球運動員在投籃命中時,運動員到籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統(tǒng)計,依據統(tǒng)計結果繪制如下頻率分布直方圖:

(I)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;

(II)在某場比賽中,考察他前4次投籃命中時到籃筐中心的水平距離的情況,并且規(guī)定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.

查看答案和解析>>

同步練習冊答案