【題目】已知函數(shù)fx)=x2+acosx

1)求函數(shù)fx)的奇偶性.并證明當(dāng)|a|2時(shí)函數(shù)fx)只有一個(gè)極值點(diǎn);

2)當(dāng)aπ時(shí),求fx)的最小值;

【答案】1)偶函數(shù),證明詳見(jiàn)解析;(2

【解析】

1)由奇偶性定義容易判斷函數(shù)的奇偶性;要說(shuō)明函數(shù)只有一個(gè)極值點(diǎn),即導(dǎo)函數(shù)只有一個(gè)零點(diǎn),結(jié)合導(dǎo)函數(shù)的單調(diào)性即可解決;

2)討論函數(shù)fx)的單調(diào)性,求出函數(shù)的極小值、端點(diǎn)處函數(shù)值比較即可求出最小值.

1)因?yàn)?/span>f(﹣x)=fx),故函數(shù)fx)是偶函數(shù).

f′(x)=2xasinx,f′(0)=0,故只需討論x0時(shí)情況,

x0,由三角函數(shù)的性質(zhì)知,xsinx,2|a|,∴f′(x)>0,∴x0時(shí),fx)是增函數(shù),

fx)是偶函數(shù),所以x0時(shí),fx)單調(diào)遞減.

|a|2時(shí),函數(shù)fx)只有一個(gè)極小值點(diǎn)x0

2)由(1)知,只需求x0時(shí)fx)的最小值.

,

設(shè)hx)=2xπsinx,h′(x)=2πcosx,因?yàn)?/span>,

由零點(diǎn)存在性定理,存在唯一的,使得h′(x0)=0

當(dāng)x0,x0),h′(x)<0,hx)遞減;

又因?yàn)?/span>h0)=h)=0,所以x時(shí),f′(x)=hx)<0恒成立,fx)在(0,)上遞減;

當(dāng)x時(shí),f′(x)=2xπsinxππsinx0,fx)為增函數(shù).

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,離心率為,過(guò)的直線與橢圓交于兩點(diǎn),且周長(zhǎng)為8.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在直線,使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),若存在求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行志愿投檔錄取模式是高考志愿的一種新方式,2008年教育部在6個(gè)省區(qū)實(shí)行平行志愿投檔錄取模式的試點(diǎn)改革.一年的實(shí)踐證叨,實(shí)行平行志愿投檔錄取模式,有效降低了考生志愿填報(bào)風(fēng)險(xiǎn).平行志愿是這樣規(guī)定:在同一批次設(shè)置幾個(gè)志愿,當(dāng)考生分?jǐn)?shù)達(dá)到這幾個(gè)學(xué)校提檔線時(shí),本批次的志愿依次檢索錄取.某考生根據(jù)對(duì)自己的高考分?jǐn)?shù)和對(duì)往年學(xué)校錄取情況分析,從報(bào)考指南中選擇了10所學(xué)校,作出如下表格:

學(xué)校

專業(yè)

數(shù)學(xué)系

計(jì)算機(jī)系

物理系

錄取概率

0.5

0.5

0.6

0.9

0.5

0.7

0.8

0.7

0.8

0.9

1)該考生從上表中的10所學(xué)校中選擇4所學(xué)校填報(bào),記為選擇的4所學(xué)校中報(bào)數(shù)學(xué)系專業(yè)的個(gè)數(shù),求的分布列及其期望

2)若該考生選擇了、、4個(gè)學(xué)校在同一批次填報(bào)志愿,填報(bào)志愿表如下,如果僅以該考生對(duì)自己分析的錄取概率為依據(jù),當(dāng)改變這4個(gè)志愿填報(bào)的順序時(shí),是否改變他本批次錄取的可能性?請(qǐng)說(shuō)明理由.

志愿

學(xué)校

第一志愿

第二志愿

第三志愿

第四志愿

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

)若,討論函數(shù)的單調(diào)性與單調(diào)區(qū)間;

)若有兩個(gè)極值點(diǎn)、,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來(lái),湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國(guó)各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來(lái),湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國(guó)各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6tA型卡車,6輛載重為10tB型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a、b滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)吋,解不等式

2)設(shè).

①當(dāng)時(shí),若存在,使得,證明:;

②當(dāng)時(shí),討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】檢驗(yàn)中心為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,對(duì)份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),需要檢驗(yàn)次;②混合檢驗(yàn),即將其中)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,再對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)方式,求恰好經(jīng)過(guò)2次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率;

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為點(diǎn).當(dāng)時(shí),根據(jù)的期望值大小,討論當(dāng)取何值時(shí),采用逐份檢驗(yàn)方式好?

(參考數(shù)據(jù):,,,,.

查看答案和解析>>

同步練習(xí)冊(cè)答案