【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應(yīng)獎勵.已知職員一年來的工作業(yè)績分數(shù)的莖葉圖如圖所示:
(1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);
(2)若記職員的工作業(yè)績的月平均數(shù)為.
①已知該公司還有6位職員的業(yè)績在100以上,分別是,,,,,,在這6人的業(yè)績里隨機抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)滿足(其中)的概率;
②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領(lǐng)取獎金.公司準備了9張卡片,其中有1張卡片上標注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規(guī)則是:獲獎職員需要從9張卡片中隨機抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎金.記職員獲得的獎金為(千元),求的分布列和期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(、為實常數(shù)).
(1)當時,證明:不是奇函數(shù);
(2)設(shè)是奇函數(shù),求與的值;
(3)當是奇函數(shù)時,研究是否存在這樣的實數(shù)集的子集,對任何屬于的、,都有成立?若存在試找出所有這樣的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,是的中點.
(1)求直三棱柱的全面積;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)表示);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合、均為實數(shù)集的子集,記:;
(1)已知,,試用列舉法表示;
(2)設(shè),當,且時,曲線的焦距為,如果,,設(shè)中的所有元素之和為,對于滿足,且的任意正整數(shù)、、,不等式恒成立,求實數(shù)的最大值;
(3)若整數(shù)集合,則稱為“自生集”,若任意一個正整數(shù)均為整數(shù)集合的某個非空有限子集中所有元素的和,則稱為“的基底集”,問:是否存在一個整數(shù)集合既是自生集又是的基底集?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2acosB=2c﹣b.
(1)求∠A的大。
(2)若△ABC的外接圓的半徑為,面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在底面為正方形的四棱錐中,平面平面分別為棱和的中點.
(1)求證:平面;
(2)若直線與所成角的正切值為,求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.
(1)證明:當取得最小值時,橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的公比,且,是、的等差中項.
(1)求數(shù)列的通項公式;
(2)試比較與的大小,并說明理由;
(3)若數(shù)列滿足,在每兩個與之間都插入個2,使得數(shù)列變成了一個新的數(shù)列,試問:是否存在正整數(shù),使得數(shù)列的前項和?如果存在,求出的值;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com