分析 (1)證明:EF∥D'C,即可證明E、F、C、D'四點共面;
(2)連接A'C',則∠A'C'E為異面直線AC、C'E夾角,即可求異面直線AC、C'E夾角的余弦值.
解答 (1)證明:如圖所示,連接A'B,D'C,則EF∥A'B∥D'C,
∴E、F、C、D'四點共面;
(2)解:連接A'C',則∠A'C'E為異面直線AC、C'E夾角,
∵AB=BC=1,AA'=2,
∴A'E=C'E=A'C'=$\sqrt{2}$
∴異面直線AC、C'E夾角的余弦值為$\frac{1}{2}$.
點評 本題考查平面的基本性質(zhì),考查異面直線所成角,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{5}{2},-2)$ | B. | $(-∞,-\frac{5}{2}]$ | C. | (-∞,-2] | D. | $[-\frac{5}{2},-2]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | -$\frac{2\sqrt{2}}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $±\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{5}{3}$x | B. | y=$\frac{3}{5}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com