17.如圖長方體ABCD-A'B'C'D'中,AB=BC=1,AA'=2,E、F分別是BB′、A'B'的中點.
(1)求證:E、F、C、D'四點共面; 
(2)求異面直線AC、C'E夾角的余弦值.

分析 (1)證明:EF∥D'C,即可證明E、F、C、D'四點共面; 
(2)連接A'C',則∠A'C'E為異面直線AC、C'E夾角,即可求異面直線AC、C'E夾角的余弦值.

解答 (1)證明:如圖所示,連接A'B,D'C,則EF∥A'B∥D'C,
∴E、F、C、D'四點共面; 
(2)解:連接A'C',則∠A'C'E為異面直線AC、C'E夾角,
∵AB=BC=1,AA'=2,
∴A'E=C'E=A'C'=$\sqrt{2}$
∴異面直線AC、C'E夾角的余弦值為$\frac{1}{2}$.

點評 本題考查平面的基本性質(zhì),考查異面直線所成角,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若將函數(shù)f(x)=sin2x+cos2x的圖象向左平移φ個單位,所得圖象關(guān)于y軸對稱,則φ的最小正值是$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=10,公差為d,前 n項和為Sn,當(dāng)且僅當(dāng)n=5 時Sn取得最大值,則d 的取值范圍為( 。
A.$(-\frac{5}{2},-2)$B.$(-∞,-\frac{5}{2}]$C.(-∞,-2]D.$[-\frac{5}{2},-2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知y=a-bcos3x(b>0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$.
(1)求函數(shù)y=-4asin(3bx)的周期和最值及相應(yīng)的x的取值集合;
(2)求函數(shù)$f(x)=2sin(a\frac{π}{3}-2bx)$的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(文科)如圖,在空間四面體ABCD中,若E,F(xiàn),G,H分別是AB,BD,CD,AC的中點,
(1)求證:四邊形EFGH是平行四邊形.
(2)求證:BC∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知cosθ=$\frac{1}{3}$,且θ是第四象限角,則sinθ的值是( 。
A.-$\frac{1}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$±\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線9y2-25x2=169的漸近線方程是( 。
A.y=$\frac{5}{3}$xB.y=$\frac{3}{5}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)若對任意$x∈[-\frac{1}{2},1]$,不等式f(x)≥|2x+a|-4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-2ax+4(a-1)ln(x+1),其中實數(shù)a<3.
(Ⅰ)判斷x=1是否為函數(shù)f(x)的極值點,并說明理由;
(Ⅱ)若f(x)≤0在區(qū)間[0,1]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案