【題目】每當《我心永恒》這首感人唯美的歌曲回蕩在我們耳邊時,便會想起電影《泰坦尼克號》中一暮暮感人畫面,讓我們明白了什么是人類的“真、善、美”.為了推動我市旅游發(fā)展和帶動全市經(jīng)濟,更為了向外界傳遞遂寧人民的“真、善、美”.我市某地將按“泰坦尼克號”原型比例重新修建.為了了解該旅游開發(fā)在大眾中的熟知度,隨機從本市歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該旅游開發(fā)將在我市哪個地方建成?”,統(tǒng)計結果如下表所示:
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);
(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡在段的概率.
【答案】(1)54 (2)2人,3人,1人 (3)
【解析】
(1)利用頻率分布直方圖得各組的頻率結合回答正確的人數(shù)占本組的頻率計算
(2)確定抽樣比得各組人數(shù)
(3)列舉法得沒有年齡段在及基本事件總數(shù),利用古典概型求解
(1)第組的人數(shù)為:人,第組的頻率為:
故
(2)抽樣比為:人
第組抽取的人數(shù)為:人;第組抽取的人數(shù)為:人;
第組抽取的人數(shù)為:人
(3)記中2人為A1,A2,中3人為B1,B2,B3,中1人為C,則在抽取的人中隨機抽取人的所有事件為A1A2,A1B1,A1B2,A1B3,A1C,A2B1,A2B2,A2B3,A2C,B1B2,B1B3,B1C,B2B3,B2C,B3C共15個,其中不含A1,A2的有6個
所抽取的人中恰好沒有年齡段在的概率:
科目:高中數(shù)學 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、、按一定順序構成的數(shù)列( )
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每當《我心永恒》這首感人唯美的歌曲回蕩在我們耳邊時,便會想起電影《泰坦尼克號》中一暮暮感人畫面,讓我們明白了什么是人類的“真、善、美”.為了推動我市旅游發(fā)展和帶動全市經(jīng)濟,更為了向外界傳遞遂寧人民的“真、善、美”.我市某地將按“泰坦尼克號”原型比例重新修建.為了了解該旅游開發(fā)在大眾中的熟知度,隨機從本市歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該旅游開發(fā)將在我市哪個地方建成?”,統(tǒng)計結果如下表所示:
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 |
(1)求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);
(3)在(2)中抽取的人中隨機抽取人,求所抽取的人中恰好沒有年齡在段的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過動點P(1,t)作直線交橢圓C于A,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù),傾斜角),曲線C的參數(shù)方程為(為參數(shù),),以坐標原點為極點,軸正半軸為極軸建立極坐標系。
(1)寫出曲線的普通方程和直線的極坐標方程;
(2)若直線與曲線恰有一個公共點,求點的極坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了讓稅收政策更好的為社會發(fā)展服務,國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應的定額扣除標準,決定自2019年1月1日起施行,某機關為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計 | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計 | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認為滿意程度與年齡有關?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻積分(單位:分)給予相應的住房補貼(單位:元),現(xiàn)有兩種補貼方案,方案甲:;方案乙:.已知這8名員工的貢獻積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補貼的員工記為“類員工”.為了解員工對補貼方案的認可度,現(xiàn)從這8名員工中隨機抽取4名進行面談,求恰好抽到3名“類員工”的概率。
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知長方形中,,為的中點. 將沿折起,使得平面平面.
(1)求證: .
(2)點是線段上的一動點,當二面角大小為時,試確定點的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com