精英家教網 > 高中數學 > 題目詳情

【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開車到公司上班路上有 L1 , L2兩條路線(如圖),L1路線上有 A1 , A2 , A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有 B1 , B2兩個路.各路口遇到紅燈的概率依次為 , .若走 L1路線,王先生最多遇到 1 次紅燈的概率為;若走 L2路線,王先生遇到紅燈次數 X 的數學期望為

【答案】 ;
【解析】解:走L1路線最多遇到1次紅燈的概率為 =

依題意X的可能取值為0,1,2,

則由題意P(X=0)=(1﹣ )(1﹣ )= ,

P(X=1)= =

P(X=2)= ,

∴EX= =

所以答案是: ,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D為線段AC的中點.

(1)求證:PA⊥BD.

(2)求證:BD⊥平面PAC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3﹣3x2﹣9x+2.
(1)求函數f(x)的單調區(qū)間;
(2)求函數f(x)在區(qū)間[﹣1,m](m>﹣1)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCD,AB=2AD=2CD=2,EPB的中點.

(1)求證:平面EAC平面PBC;

(2)若二面角PACE的余弦值為,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數,在(80,+∞)上為減函數,且P(72≤X≤88)=0.682 6.

(1)求參數μ,σ的值;

(2)求P(64<X≤72).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 f(x)=x﹣ln x﹣2.
(Ⅰ)求函數 f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在12件同類型的零件中有2件次品,抽取3次進行檢驗,每次抽取1件,并且取出后不再放回,若以ξ和η分別表示取到的次品數和正品數.

1求ξ的分布列、均值和方差;

2求η的分布列、均值和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2+ax+b(a,b∈R)在區(qū)間(0,1]上有零點x0 , 則 的最大值是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在△ABC中,ab·cos Cc·cos B,其中ab,c分別為角AB,C的對邊,在四面體PABC中,S1,S2,S3,S分別表示△PAB,△PBC△PCA,△ABC的面積,αβ,γ依次表示面PAB,面PBC,面PCA與底面ABC所成二面角的大。畬懗鰧λ拿骟w性質的猜想,并證明你的結論

查看答案和解析>>

同步練習冊答案