【題目】函數(shù)f(x)=x2+acosx+bx,非空數(shù)集A={x|f(x)=0},B={x|f(f(x))=0},已知A=B,則參數(shù)a的所有取值構(gòu)成的集合為_____;參數(shù)b的所有取值構(gòu)成的集合為_____

【答案】

【解析】分析:根據(jù)條件A=B,得f(0)=0,解得a;再根據(jù)f(-b)=0,得f(x)=-b無解或僅有零根,解得b的取值范圍.

詳解:因為A=B,所以f(x)=0成立時f(f(x))=0也成立,因此f(0)=0,,即參數(shù)a的所有取值構(gòu)成的集合為

因為f(x)=x2+ bx,所以由f(x)=0

-b=0, f(f(x))= x4=0,滿足A=B

,f(f(x))=0f(x)=0f(x)=-b,

因此f(x)=-b無解或僅有零根,因為,即方程無解,

綜上b的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點F為拋物線C)的焦點,過點F的動直線l與拋物線C交于M,N兩點,且當直線l的傾斜角為45°時,.

1)求拋物線C的方程.

2)試確定在x軸上是否存在點P,使得直線PM,PN關于x軸對稱?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,四邊形是邊長為2的菱形,

1)證明:平面平面;

2)當平面與平面所成銳二面角的余弦值,求直線與平面所成角正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機,公司統(tǒng)計了消費者對這兩種型號手機的評分情況,作出如下的雷達圖,則下列說法不正確的是( )

A. 甲型號手機在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.

C. 甲型號手機在性能方面比較好.D. 乙型號手機在拍照方面比較好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),下列命題:

的定義域為;

是奇函數(shù);

上單調(diào)遞增;

④若實數(shù)滿足,則;

⑤設函數(shù)在上的最大值為,最小值為,則.

其中真命題的序號是______.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinx+2φ)為偶函數(shù),其中φ∈(0),則下列關于函數(shù)gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數(shù)fx)的圖象向上平移一個單位,再向右平移個單位長度得到

C.gx)的圖象的一個對稱中心為(,0

D.gx)的一個單調(diào)遞增區(qū)間為[0,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其定義域為.(其中常數(shù),是自然對數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點的最大值與最小值.

查看答案和解析>>

同步練習冊答案