已知
為兩個不相等的非零實數(shù),則方程
與
所表示的曲線可能是( )
試題分析:直線
可化為
,其斜率和縱截距分別為
,曲線
可化為
.選項A中,由直線所在位置可知,
,而曲線中
,不符合;選項B中,由直線所在位置可知,
,而曲線中
,不符合;選項C中,由直線所在位置可知,
,曲線中也有
,符合;選項D中,由直線所在位置可知,
,而曲線中
,不符合,故選C.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
的方程為
,雙曲線
的兩條漸近線為
、
.過橢圓
的右焦點
作直線
,使
,又
與
交于點
,設
與橢圓
的兩個交點由上至下依次為
、
.
(1)若
與
的夾角為
,且雙曲線的焦距為
,求橢圓
的方程;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點O,焦點在x軸上,離心率為
的橢圓過點
(1)求橢圓的方程;
(2)設不過原點O的直線
與該橢圓交于P,Q兩點,滿足直線
的斜率依次成等比數(shù)列,
求
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:
與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的頂點為原點,其焦點
到直線
的距離為
.設
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(Ⅰ)求拋物線
的方程;
(Ⅱ)當點
為直線
上的定點時,求直線
的方程;
(Ⅲ)當點
在直線
上移動時,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設拋物線
的焦點為
,準線為
,
,以
為圓心的圓
與
相切于點
,
的縱坐標為
,
是圓
與
軸除
外的另一個交點.
(I)求拋物線
與圓
的方程;
(II)過
且斜率為
的直線
與
交于
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線
的參數(shù)方程為
(t為參數(shù),0<a<
),曲線C的極坐標方程為
.
(1)求曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A、B兩點,當a變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若對于給定的負實數(shù)
,函數(shù)
的圖象上總存在點C,使得以C為圓心,1為半徑的圓上有兩上不同的點到原點的距離為2,則
的取值范圍為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過拋物線
的焦點
的直線交拋物線于
兩點,點
是坐標原點,若
,則△
的面積為( )
查看答案和解析>>